PRELIMINARY REVIEW OF THE IMPACT OF IRRIGATION ON POVERTY
WITH SPECIAL EMPHASIS ON ASIA
PRELIMINARY REVIEW OF THE IMPACT
OF IRRIGATION ON POVERTY
WITH SPECIAL EMPHASIS ON ASIA

Michael Lipton and Julie Litchfield
with Rachel Blackman, Darshini De Zoysa,
Lubina Qureshy and Hugh Waddington.
Poverty Research Unit at Sussex
University of Sussex

LAND AND WATER DEVELOPMENT DIVISION
WATER RESOURCES, DEVELOPMENT AND MANAGEMENT SERVICE
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
Rome, 2003
The impact of irrigation on poverty is a controversial issue. While there is empirical evidence that irrigation development has, in some cases, a substantial impact on poverty reduction, it becomes increasingly clear that such impact is determined by the type of irrigated agriculture. The scheme size, the type of operation and maintenance, the system of water allocation, etc. can all play an important role in determining the eventual impact on beneficiaries.

So far, there exists no comparative analysis of the performance of irrigated agriculture with respect to poverty, yet interest of donors in poverty alleviation is increasing and governments need to take strategic decisions for future investments in irrigation.

This study was promoted to help understand the linkages between irrigation development and poverty reduction, with a view to propose recommendations on how to increase the impact of irrigation development projects on poverty alleviation. Through a review of 27 irrigation project, it aims to provide a framework for analysing the impacts of irrigation on poverty and to review some evidence of these impacts. It is hoped that its findings and recommendations can help shaping future investment strategies in the field of irrigation.
List of acronyms

DTW Deep Tube-well
EEW Economic efficiency of water
ERR Economic rate of return
HYV High yielding variety
IRR Internal rate of return
LIS Lift irrigation system
PPP Purchasing power parity
RPF Resources poor farmer
WUA Water User Association
WUE Water Use efficiency
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ACRONYMS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF BOXES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>1. INTRODUCTION AND OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>2. INVESTMENT IN IRRIGATION</td>
<td>5</td>
</tr>
<tr>
<td>What are the reasons for the decline in investment?</td>
<td>7</td>
</tr>
<tr>
<td>Construction costs</td>
<td>8</td>
</tr>
<tr>
<td>Cost recovery</td>
<td>9</td>
</tr>
<tr>
<td>Prices</td>
<td>9</td>
</tr>
<tr>
<td>Technical efficiency</td>
<td>9</td>
</tr>
<tr>
<td>Health and Environment impacts</td>
<td>10</td>
</tr>
<tr>
<td>3. THE EFFECTS OF IRRIGATION ON POVERTY: A FRAMEWORK FOR ANALYSIS</td>
<td>11</td>
</tr>
<tr>
<td>The impacts of irrigation on poverty via output, employment and prices.</td>
<td>11</td>
</tr>
<tr>
<td>Socio-economic impacts of irrigation</td>
<td>16</td>
</tr>
<tr>
<td>The impact of irrigation on the environment</td>
<td>17</td>
</tr>
<tr>
<td>Summary</td>
<td>17</td>
</tr>
<tr>
<td>4. A REVIEW OF THE EVIDENCE</td>
<td>19</td>
</tr>
<tr>
<td>Farm output, rural employment and prices</td>
<td>19</td>
</tr>
<tr>
<td>Context and evidence of increased production</td>
<td>19</td>
</tr>
<tr>
<td>The special role of groundwater</td>
<td>20</td>
</tr>
<tr>
<td>Production linkages and farm-non farm linkages</td>
<td>21</td>
</tr>
<tr>
<td>Income stabilization</td>
<td>22</td>
</tr>
<tr>
<td>Equity issues and governance in water management</td>
<td>23</td>
</tr>
<tr>
<td>Impact on employment opportunities</td>
<td>23</td>
</tr>
<tr>
<td>Food prices</td>
<td>24</td>
</tr>
<tr>
<td>Poverty reduction as an objective in irrigation projects</td>
<td>25</td>
</tr>
<tr>
<td>Socio-economic impacts: resettlement and health</td>
<td>25</td>
</tr>
<tr>
<td>Issues of irrigation, power structures and rights for the poor</td>
<td>26</td>
</tr>
<tr>
<td>Pricing of irrigation water</td>
<td>27</td>
</tr>
<tr>
<td>5. ASSESSING THE IMPACT OF IRRIGATION PROJECTS ON POVERTY</td>
<td>29</td>
</tr>
<tr>
<td>Differential effects by technology type</td>
<td>29</td>
</tr>
<tr>
<td>Impacts of irrigation on specific groups of poor</td>
<td>33</td>
</tr>
<tr>
<td>6. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>37</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>39</td>
</tr>
<tr>
<td>ANNEX – EVALUATION OF IRRIGATION PROJECTS</td>
<td>45</td>
</tr>
</tbody>
</table>
List of boxes

1. Measuring water use efficiency 7
2. The impact of irrigation on poverty: a case-study from The Gambia 32

List of tables

1. Poverty incidence and irrigation in developing regions 1
2. Food produced from irrigated land 5
3. Real capital costs for construction of new irrigation systems, 1966-88 9
4. Output impact of groundwater, canals and tanks, India 1977-79 20
5. Average yields per ha under four water supply situations in Pakistan, 1978 21
6. Instability in irrigated and non irrigated farming, India 1971-84 22
Chapter 1
Introduction and overview

Poverty reduction is now one of the main goals of development yet progress against poverty stalled in many countries during the late 1990s and early 2000s. Of the 1.2 billion people defined as dollar-poor (i.e. with a per capita household income or consumption level below US$1-a-day in 1985 PPP), three-quarters live in rural areas. Reviving the fight against poverty requires action on many fronts (see IFAD, 2001), too numerous to address in one paper, but a review of the evidence of past poverty reductions suggest that one important weapon is investment in agriculture. This paper focuses on one aspect of agricultural technology: irrigation.

The choice can be justified quite simply. There are huge regional differences in the proportion of cropland that is irrigated and these coincide with successes or failures in poverty reduction (see Table 1). In Africa only around three percent of cropland is irrigated and the region has experienced very little reduction in poverty in the 1990s (sub-Saharan Africa had an estimated poverty headcount of 47.7 percent in 1990 and 46.3 percent in 1998 (World Bank, 2000)). In contrast, those regions that have the greatest proportion of cultivated area irrigated (namely East Asia and Pacific and North Africa and Middle East) have experienced the greatest poverty reduction. In addition, 35–40 percent of cropland in Asia is irrigated and poverty reduction in the 1970s, the period immediately following the Green Revolution in which much initial investment in irrigation was made, was substantial. We argue in this paper that this is no mere coincidence, rather that differences across regions, countries and states within countries in irrigation is an important factor in determining rates of poverty reduction. The significant poverty reduction in many parts of India for example is attributed to the availability of irrigation, which

<table>
<thead>
<tr>
<th>Region</th>
<th>US$1-a-day poverty(^a) 1998</th>
<th>% of total Population</th>
<th>% Change in incidence 1987-98</th>
<th>% Irrigated area per ha cultivated area (arable + permanent cropland) 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Asia and Pacific</td>
<td>278(^b)</td>
<td>15(^b)</td>
<td>-33(^a)</td>
<td>20</td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td>78</td>
<td>16</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>N Africa & M East</td>
<td>5</td>
<td>0.04</td>
<td>-44</td>
<td>27</td>
</tr>
<tr>
<td>South Asia</td>
<td>522</td>
<td>39</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>291</td>
<td>44</td>
<td>34</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^a\) People living on less than US$1 per day in 1998 (1993 PPP $US) (Estimates)
\(^b\) East Asia

not only boosted agricultural production but also made possible the adoption of modern farming technology – seeds, fertilizers and pesticides – that further reduced poverty (Ray, Rao and Subbarao 1988).

This paper aims to provide a framework for analysing the (positive and negative) impact of irrigation on poverty and to review some of the evidence of these impacts. We reach a number of conclusions about the conditions under which irrigation is most likely to have a positive impact on the poor, but we also report that evidence is patchy, and usually not gathered in such a way as to allow easy conclusions to be drawn.

Irrigation may lead to poverty reduction via increased yields, increased cropping areas and higher value crops (all favouring initially farmers, including poor small deficit and surplus farmers), by these means raises employment (directly of farm workers, indirectly of other workers if wages are bid up) and maybe cuts prices in an imperfectly open economy or if there are high transport costs. Increased mean yields can mean increased food supplies, higher calorie intakes and better nutrition levels. There are also stability effects because of reduced reliance on rainfall – hence irrigation lowers the variance of output and employment and yields, and helps to reduce adverse consequences of drought (Dhawan, 1988). However irrigation may increase the covariance by crowding larger proportions of total output into nearby irrigated areas (because even these partly depend on rainfall and its variation)\(^1\).

All irrigation benefits (also to poor) must be offset against costs. These include not just the direct costs of irrigation projects themselves, or the costs of some of the negative impacts but also the opportunity costs of irrigation investments, i.e. opportunities foregone of cutting poverty in other ways. The Green Revolution period is “odd” in the sense that complementarities among irrigation, extension, rural roads, seed research, fertilizers etc were exceptionally high, obscuring the normal trade-offs between one type of investment and another. Perhaps, however, this very complementarity provides further justification for the need for extra investment in irrigation.

Some of the most visible and politically sensitive costs are environmental and affect the sustainability of irrigation projects: big changes to the water table, salinity, waterlogging – the latter reducible by intelligent but costly drainage planning, destruction of natural habitats all receive much press. Other costs may include widening of income and wealth disparities between dry and irrigated tracts, or between farm classes within an irrigated region, the reappearance of malaria in virulent form in irrigated areas; adverse output impact of irrigation on growth of staples such as pulses, oilseeds and coarse grains. Yet Dhawan (1988) argues that these problems are not caused by irrigation alone. Waterlogging, for example, is also caused by floods and construction of roads and railways.

Before we begin to assess how irrigation affects poverty we need to consider different meanings of poverty and different types of irrigation. The impact of irrigation on poverty may vary by what we mean by poverty and how we measure it. Firstly the indicator of poverty needs to be chosen. Narrow or one-dimensional indicators include income and consumption, or calorie intake or anthropometric measures, while broader measures may include several dimensions such as access to a range of goods and services including health, education, public transport and utilities, ownership of land and other assets, political freedom and human rights. One might reasonably expect irrigation projects to impact on some of these different indicators (e.g.

\(^1\) Hazell (1992) showed that the effect of increased covariance can outweigh the effect of falling variance, so variability of total output allegedly increased in 1970s in India, though farm-specific and small-region-specific variance fell.
income via higher yields, calorie intake by better food security) but access to education, or respect for political and human rights may not be affected, or only in the long-run. In addition, irrigation may have a positive impact on some dimensions of poverty but a negative impact on others. For example, irrigation may raise land prices in irrigated areas, out of reach of the landless poor or poor small farmers, but increase their incomes and employment opportunities.

Secondly poverty can be defined in absolute or relative terms, depending on how we define the poverty line or the threshold that separates the poor from the non-poor. Absolute concepts define a threshold fixed in real terms, for example an income level, that provides a given standard of living or welfare, while relative concepts adjust the threshold to reflect levels of consumption and welfare in society as a whole, which may therefore change over time as the societal level and distribution of welfare (and perceptions of what is adequate) change. Irrigation might raise incomes of the poor sufficiently to guarantee sufficient food consumption, but its ability to affect relative poverty will depend on not only whether the poor benefit directly proportionately more than the non-poor but also on the poor’s access to other inputs, assets, technology, markets and institutions.

Finally there is the time dimension of poverty to consider. Not all of the poor will be poor all year, or all their lives and there may be considerable movement in and out of poverty across seasons and across years. Irrigation may remove part of the variance of incomes across seasons and years, and so reduce the incidence of spells of poverty among those that flip in and out of poverty but it is unclear that the permanently poor will be lifted out of poverty by irrigation alone.

Irrigation may take many different forms from large schemes to small systems of shallow tube-wells, from surface irrigation to small sprinkler or drip systems. Often irrigation projects have several aims, not necessarily explicitly or directly orientated towards poverty reduction. Perhaps more importantly however, irrigation may impact differently on the poor depending on the irrigation technology itself, their position along the distribution system (e.g. tail-enders), the institutional rules governing access to water and maintenance of water systems and their ability to complement irrigation with other agricultural inputs (which includes access to land, credit, seeds, fertilizer etc). Furthermore the poor are not a homogenous group of people defined uniformly by a set of characteristics. Instead they are much more heterogeneous, comprising different ages, gender, ethnicity, education, different economic activity and location. These differences also vary across regions, countries and states within countries. Irrigation may affect different types of poor people in different ways: perhaps impacting on small farmers first by boosting yields and income levels, then impacting on landless labourers through increased demand for agricultural labourers, and then on the urban poor via lower food prices and possibly reduced migration of the rural poor to urban areas.

Given these potentially large poverty impacts of irrigation across a wide range of poor people, it is alarming that investment in irrigation has been falling. Chapter 2 of this paper presents some of the evidence and possible reasons for declining investment in irrigation and examines the case for extra irrigation. Chapters 3 and 4 review the theory and evidence respectively on the links between irrigation and poverty. Chapter 5 sets out a framework for assessing the poverty impact of irrigation projects by technology type and by different groups of poor people. Chapter 6 concludes and provides a number of policy recommendations.

1 Of the 27 irrigation projects evaluated for this paper, only 5 cited poverty reduction as an explicit goal.
Chapter 2
Investment in irrigation

The Technical Advisory Committee of the Consultative Group on International Agricultural Research (CGIAR) estimated that the average annual value of all crop production in developing countries for the years 1987 to 1989 was US$364 billion (Yudelman, 1993; Wallingford, 1997). Of this, US$104 billion worth of crops or 28.5 percent was produced on irrigated land. About 2.4 billion people of the developing countries depend directly on irrigated agriculture for food and employment. Even though the importance of irrigation seems obvious, there has been a decline in investment in irrigation.

Irrigated agriculture produces 40 percent of food and agricultural commodities from 20 percent of agricultural land. Thus, food security is critically dependent on irrigation, particularly in Asia where about 60 percent of the food production is from irrigated land. Table 2 presents the relative contribution from irrigation across regions. (World Food Summit 1996; Wallingford 1997).

During the past three decades Africa’s food production has grown at the rate of two percent per year, whilst its population growth has been three percent. The number of malnourished children is expected to increase by 14 million during the next 25 years. According to IFPRI (2020 vision), given these trends sub-Saharan Africa would need to triple its import of cereals from 9 million tonnes in 1990 to 29 million tonnes in 2020. One way in order to do this would be to expand irrigated area. At the same time, however, Africa faces a water scarcity problem. Africa is a dry continent and receives unstable rainfall. Costs of irrigation in Africa are also higher than in other parts of the world (FAO, 1986).

Yet given these alarming statistics, evidence from two key sources indicates that investment in irrigation has begun to decline. Data on irrigated areas, globally and across regions, show that the rate of growth in irrigated area has declined, and has been accompanied by a decline in lending for irrigation by international donors (Mark and Svendsen 1993). However, linking evidence on irrigated areas to irrigated investments is difficult as one needs to take account of

<table>
<thead>
<tr>
<th>Region</th>
<th>Food produced from irrigated land (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>60</td>
</tr>
<tr>
<td>Pakistan</td>
<td>80</td>
</tr>
<tr>
<td>China</td>
<td>70</td>
</tr>
<tr>
<td>India</td>
<td>50</td>
</tr>
<tr>
<td>Indonesia</td>
<td>50</td>
</tr>
<tr>
<td>Middle east and north Africa</td>
<td>33</td>
</tr>
<tr>
<td>Egypt</td>
<td>98</td>
</tr>
<tr>
<td>Iran</td>
<td>50</td>
</tr>
<tr>
<td>Latin America</td>
<td>10</td>
</tr>
<tr>
<td>Chile and Peru (food crops for export)</td>
<td>50</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>9</td>
</tr>
</tbody>
</table>

1 Rosegrant and Pervez (1995) show that investments in new irrigation and an improvement in existing facilities can reduce the projected demand for cereal imports.
proportions of initial cropland irrigated. Diminishing returns to irrigation investment are surely less likely if these proportions are very small to start with. Also, one needs to distinguish between gross and net change in irrigated area. Quite a lot of once-irrigated area becomes non irrigated due to (a) ‘losing ground’ from agriculture to urban and other uses or loss of irrigated land due to inadequate water management practices (Stalinization, waterlogging); (b) losing water – falling water-tables, deteriorating management (more seepage, etc.) of irrigation systems, and increasing pressure to divert water from agriculture to urban-domestic and industrial uses; (c) possibly the effect of global warming in increasing evaporation rates (as well as increasing variability of rainfall in the inter-tropical convergence zone). For all these and other reasons annual gross growth of irrigated area exceeds net increase, especially in countries with much or old irrigation systems. Globally irrigated area rose at an annual average rate of 2.0 percent in the 1960s, of 2.4 percent in the 1970s and fell to 0.9 percent in the 1980s. Regional figures, with the exception of Africa, show a similar pattern of growth of irrigated area peaking in the 1960s and 1970s, and declining in the 1980s. In the forthcoming decades, this trend will continue, and it is expected that annual growth of irrigated land will be of the order of 0.7 percent (FAO, 2002).

There has been a large decline in real lending by major donors (World Bank, Asian Development Bank, Japanese Overseas Development Fund) for irrigation projects in South and Southeast Asia, since the late 1970s and early 1980s, when it peaked. By 1986-87 World Bank lending was only around 40 percent of peak lending, and lending by other donors shows similar trends.

Trends in public expenditure on irrigation in selected Asian countries also show a decline in real irrigation expenditure in the late 1980s. Annual expenditure in China and Sri Lanka was cut by nearly 50 percent between the late 1970s and 1980s. In the Philippines the level in the late 1980s was only 1/3 of that in the early 1980s. Expenditures peaked later in Bangladesh, Indonesia and Thailand, but these countries also show a decline in investment in irrigation. In India, public sector investment in irrigation has been stagnant or declining since the mid-1980s.

It is clear from this evidence that lending for irrigation projects and actual investment in irrigation has been declining across and within regions. The World Bank Operations Evaluation Department (OED) determined in its 1993 Irrigation Review that irrigation accounted for seven percent of Bank lending, with a peak of 10 percent during the 1970s and 1980s – more than any other single sector – but since then Bank lending for irrigation projects has declined. From 1950 to 1993, the Bank lent roughly US$31 billion (in 1991 dollars) for various forms of irrigation in 614 projects. Investment in irrigation reached a peak in the 1970s and 1980s with lending to over 250 projects in the 1970s at a total cost of US$1 120 million (1991 prices). Since then, lending for irrigation has considerably fallen. During the financial years 1995-99, there were only 39 irrigation projects with an average annual lending of US$750 million (http://wbh0018.worldbank.org/essd/essd.nsf/). This is during a period of declining lending for agriculture and rural development, which suggests that investment and lending for irrigation is not being substituted by lending for other inputs or activities.

What of private sector irrigation? Typically, monitoring both use and development of private irrigation is difficult. In India and Mexico for example, two thirds of groundwater development is privately managed and is often mixed in with surface irrigation schemes, resulting in a mosaic of largely unregulated conjunctive use. In Latin America, private sector investment has historically been important and only gave ground to public sector investment during the 1970s. In Mexico, a substantial number of irrigation units covering a large proportion (around 40 percent) of irrigated area were privately owned, even before reforms of publicly-funded
irrigation districts shifted control to water user associations (Johnson, 1997; Ringler, Rosegrant and Paisner, 2000). During the reform, increases in private sector investment in irrigation infrastructure have been dramatic, and have helped compensate for the 41 percent decline in federal government investment between 1991 and 1995 (CNA 1995; Ibid.). In many countries the trend is towards increased involvement of the private sector both in investment and management of irrigation. In Chile, with one of the most privatized irrigation sectors in Latin America, farmers have to, by law, contribute as much as 75 percent to new pumping and channel irrigation projects, with the result that only the most profitable schemes are built. The extent of private sector involvement in the approval, funding and operation, management and maintenance of irrigation projects has increased water use efficiency (see Box 1 for definitions) with booms in agricultural exports despite a small decline in irrigated area per capita (Gazmuri Schleyer, 1997; Ringler, Rosegrant and Paisner, 2000).

WHAT ARE THE REASONS FOR THE DECLINE IN INVESTMENT?

The decline in investment in irrigation is largely ascribed to the falling economic rate of return (ERR) of irrigation projects, both new and existing making other sorts of investment better options for scarce resources. This is in part due to declining agricultural price, but it may also be because of technical reasons. Higher-return works are usually built first (e.g. the best sites have already been chosen) leaving less good ones for later, or because of rising costs of construction, or because of a better assessment of externalities, i.e. increasing negative impacts (e.g. on health and the environment). We evaluate each of these in turn. However it must be stressed that the growth effect of investments in irrigation is only part of the story about the impact on returns to the poor, or for poverty reduction. Falling ERR may mean that the amount of total available resources declines, but distribution changes could amplify, reduce, or even reverse the effect of ERR falls on poverty. Poverty reduction impacts of projects may not come about through significant increases in yields or output alone, but through improving the distribution of access to irrigation by the poor. Hence project evaluations of poverty impacts need to evaluate not just the ERR but the impact on poverty reduction for each marginal dollar of investment.

Using Indian data from 1970-93, Fan, et al. (1999:46) argue that Government spending in different investments including rural infrastructure and agricultural research and extension contributed to agricultural growth, but the effects on poverty and productivity increase differed
markedly. Investment in rural infrastructure and agricultural research and extension were definite ‘win-win’ situations, and had the highest impact on productivity and output. However investment in irrigation had only the third largest impact on agricultural productivity, and a smaller impact on rural poverty reduction.

But these rankings of investment types, and the returns to each type, differ hugely among regions. Fan et al. (1999) show that some rainfed or “backward” regions show higher ERR and higher poverty impact per marginal dollar for a wide range of types of investment than already advanced irrigated areas. Furthermore, even if it is found that in some countries or regions new works have lower economic returns than other projects, investment in new works may have higher poverty impacts than other investments. Finally, while it may be the case that marginal physical returns from old works are falling (as irrigated area from a particular works expands or for ecological or management reasons as time passes), rehabilitation of existing irrigation systems may have higher ERR than either new irrigation or other types of investment.

Carruthers (1996) argues that the returns to irrigation are comparable to alternative investments in agriculture and non-agricultural projects. In an evaluation of 192 World Bank-funded irrigation projects implemented between 1950 and 1993, 67 percent received an overall satisfactory rating with an average internal rate of return (IRR) of 15 percent at evaluation (as opposed to appraisal or completion). This average is quite high given the large initial investments required in irrigation projects, the long gestation periods before benefits start trickling in and accounting for inflation. Moreover this was achieved in a period when the domestic terms of trade, due to overvalued exchange rates, and various indirect taxes or subsidies to competing urban interests, worked against the agricultural sector. When irrigation projects were weighted by area served, the average evaluation IRR increased to 25 percent. Hence the decline in investment in irrigation should not be ascribed to a real decline in the rate of return to such investments.

There was no downtrend in ERR to agricultural research in the 1980s or early 1990s as compared with 1960s and 1970s – despite exhaustion of new Green Revolution uptrends on basic yields. There is no reason why irrigation investments are any different. The relatively constant ERR is despite falling world agricultural prices (about 0.5 percent per year relative to manufactures) and should carry through to, and parallel results for, trends in returns to irrigation.

Construction costs

There is an argument that investment in irrigation is falling because of rising costs of construction. This may well be the case in some areas (see Table 3). In India and Indonesia the real costs of new irrigation have more than doubled since the late 1960s and early 1970s; in the Philippines real costs increased by more than 50 percent; in Thailand by 40 percent, and in Sri Lanka, costs tripled. The result is lower returns to investment. This has been shown by Aluwihare and Kikuchi (1991) for Sri Lanka where the benefit cost ratio for new construction declined from 2.1 in 1970-74 to 0.7 in 1985-89. But these data relate to countries where irrigation has long been intense. In other regions, costs of construction are falling, and so invalidating some of the old arguments against irrigation expansion.

1 Though this was increasingly ‘defensive’, i.e. the new research achieved its returns increasingly by preventing bugs and water shortages from reducing yields, rather than by increasing yields per se.
Cost recovery

Poor cost recovery could be another factor that explains declining trends in irrigation investment. Public irrigation projects have been an enormous drain on government budgets, mainly because cost recovery falls short of covering the actual costs (Johnson, 1990). For example, in Pakistan in 1984 approximately Rs 1 billion were collected in payment for public irrigation services. Operation and Maintenance costs were about Rs 2 billion and annualized charges for past irrigation investments were Rs 5.9 billion. Small et al (1986) studied cost recovery for five South and Southeast Asian countries (Indonesia, Korea, Nepal, Philippines, and Thailand) and found that actual government receipts covered less than 10 percent of the full irrigation costs. Increased pressure to recover costs or to reduce subsidies may also make irrigation projects less attractive other things being equal, but presumably cost recovery problems will affect all public investments.

Prices

The biggest surge in investment in irrigation occurred in the 1970s, leading some to argue that this was due to the rise in agricultural prices, due in turn to the two oil crises raising prices of inputs and transport and unfavourable weather conditions, and to argue further that declines in agricultural prices make future investment in irrigation unwarranted (Repetto, 1986). If these events were perceived to be significant and likely to extend into the long-run, then this argument may have some merit. It is possible however that falling agricultural prices now are a consequence of rising irrigated area and hence higher global yields, and even more if extra irrigation creates incentives for green revolutions in seed-fertilizer use, and if these eventually raise yields (more accurately, net value added) more slowly than they depress farm prices (more accurately, farm output prices relative to farm input prices – fertilizer prices may be bid up, as well as crop prices down). However, even if agricultural prices continue their downward trend, there is sufficient evidence that ERR can be maintained at acceptable levels (Carruthers, op cit).

Technical efficiency

Another possible reason behind declining investments in irrigation is decline in other aspects of irrigation performance. Misincentives, such as poorly targeted subsidies, or inappropriate water pricing systems can induce overuse or wastage of water (IFAD, 2001). Inefficient irrigation is cited as one of the main reasons for low returns to investment in Latin America. With the

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1966-69</td>
<td>2 698</td>
<td>1 521</td>
<td>1 613</td>
<td>1 470</td>
<td>1 419</td>
</tr>
<tr>
<td>1970-74</td>
<td>2 368</td>
<td>1 681</td>
<td>1 882</td>
<td>256</td>
<td>2 584</td>
</tr>
<tr>
<td>1975-80</td>
<td>1 656</td>
<td>3 187</td>
<td>2 263</td>
<td>2 909</td>
<td>2 366</td>
</tr>
<tr>
<td>1981-85</td>
<td>4 033</td>
<td>3 283</td>
<td>2 688</td>
<td>5 288</td>
<td>2 276</td>
</tr>
<tr>
<td>1986-88</td>
<td>4 856</td>
<td>4 096</td>
<td>Na</td>
<td>5 776</td>
<td>2 812</td>
</tr>
</tbody>
</table>

Source: Mark and Svendsen 1993.
possible exception of Chile, where water use efficiency has improved due to the establishment of water markets and tradable water rights, and where cost recovery is very high (Hearne and Easter, 1995; Ringler, Rosegrant and Paisner, 2000), inefficient irrigation damages the performance of projects. Estimates from Brazil found excess irrigation time, pipe leakage and surface runoff to be the main culprits (Alfar and Marin, 1994; Ibid.). Exogenous factors, such as global warming that increases irrigation water requirements, may also have affected technical aspects of projects.

Health and Environment impacts

Declining ERR of investments in irrigation may be due to either increased negative impacts of irrigation or increased value being ascribed to such costs. It is certain that there has been more vocal and visible concern over the social and environmental impacts of irrigation projects, particularly but not exclusively large-scale irrigation projects. Negative environmental effects\(^1\) that are difficult to identify let alone value, create adverse publicity and weakens political support for such projects, despite the fact that, even with adequate compensation systems, benefits may still outweigh costs. The World Bank in its study of 50 large dams estimated that only 26 percent of the 50 projects had an unacceptable social and environmental impact that could not be mitigated without jeopardizing the economic returns to the projects. The remainder of the projects could still make adequate compensation or investments in technology to avoid associated environmental effects and have acceptable ERR (World Bank, 1996).

\(^1\) Such as water-logging, sedimentation, salinization, over extraction of groundwater, loss of natural habitats and pollution of surface and groundwater with nitrates, phosphates, ammonium compounds.
Chapter 3
The effects of irrigation on poverty:
a framework for analysis

Why is the decline in investment in irrigation important for poverty reduction? While the answer may be obvious to some given the importance of water as an input in agricultural and other productive processes, in reality the channels that transmit effects of irrigation through to poor households are many and complex. This section lays out a conceptual framework for analysing the transmission mechanisms between irrigation and poverty, whilst the following section reviews some of the country and regional evidence that sheds light on the relative importance of different channels. We attempt to examine how the size of different effects of irrigation on the transmission mechanisms to poverty varies by characteristics of the irrigation project, such as type, scale, water source, management and maintenance mechanisms of irrigation projects.

The impacts of irrigation on poverty via output, employment and prices.

We begin to identify the impact of irrigation by considering a partial equilibrium scenario with a hypothetical, unspecified irrigation project in one location and farmers producing one farm product, for example a staple grain, and then consider secondary, general equilibrium effects by allowing for multiple farm products.

The first direct impact is on output levels. Irrigation boosts total farm output and hence, with unchanged prices, raises farm incomes. Increased output levels may arise for any of at least three reasons. Firstly irrigation improves yields through reduced crop loss due to erratic, unreliable or insufficient rainwater supply. Secondly, irrigation allows for the possibility of multiple-cropping, and so an increase in annual output\(^1\). Thirdly, irrigation allows a greater area of land to be used for crops in areas where rainfed production is impossible or marginal. Hence irrigation is likely to boost output and income levels. If there is no price effect (i.e. through higher output levels) and no effect on employment or stability of food availability, only “small farmers” among the poor – or more precisely only the own-farm incomes of the poor – are affected by this. If the output effect is the only effect that irrigation has then its poverty impact will be limited, given that labour income is a growing part of poor’s income, and labourers are growing share of the poor. Finally, output may be increased because irrigation enables the use of complimentary inputs, such as high yielding varieties (HYVs). In fact, during the Green Revolution, there was an initial emphasis on using HYVs on better-watered areas, and on wheat and rice regions, which tended to leave out the poorer areas. HYVs (and irrigation

\(^1\) Note, however, that Dhawan (1988) argues against sole use of measures of land use efficiency such as cropping intensity (i.e. ratio of gross cropped area to net sown area – a simple indicator of the extent of multiple cropping or number of crops being raised in a sequence) to measure the ‘success’ of irrigation, since if the main aim of irrigation is to protect or enhance the yield of the main wet season crop, it is futile to expect any beneficial impact on intensity of cropping.
Chapter 3 – The effects of irrigation on poverty: a framework for analysis

Complements the use of HYVs) increased surpluses so that the prices of cereals were lower than what they would otherwise have been. In the areas that gained from the use of HYVs the decline in prices was outweighed by an increase in yields, but in areas that did not benefit from HYVs, the restraint on cereals prices harmed farm sales and there was little or no yield compensation (Lipton and Longhurst, 1989). Thus, incomes reduced in these areas. The landless and the food deficit farmers gained through a decline in the cost of food purchases. Lipton and Longhurst (1989) argue that the problem of ‘regions left out’ should not be over-generalized for the following reasons:

1. In some cases such as India and West Malaysia, inequality among rural areas is associated with only a small proportion of either poverty or national inequality (Malone, 1974 and Anand, 1984; Lipton and Longhurst, 1989:16);
2. In other cases, some of the regional bias in benefits from HYV research corrects earlier research biases towards regions suitable for major export crops, especially within West Africa;
3. To some extent, migration from non-HYV areas to HYV areas could reduce the bias;
4. Finally, net food buyers would gain in any case in all regions.

Regional income distribution has actually improved in some countries. In Taiwan, most of the cropland is in irrigable HYV rice so that there has been an improvement in regional income distribution. In Pakistan, 40 percent of the cropland is in irrigated wheat and there has also been a spread of HYVs to rainfed and barani areas (Rochin, 1973; Lipton and Longhurst 1989). This helped in reducing inequality among rural regions in Pakistan (Chaudhry, 1982; Ibid.). In India (excluding the Eastern rice states and Kerala) HYVs did not increase inter-district inequality.

Binswanger and Quizon (1986) use a general equilibrium model of India’s agricultural post-Green Revolution sector to consider the effect of expanding the irrigated area by 10 percent on the rural poor. The effect is to increase aggregate output by 2.7 percent and decrease the aggregate price level by 5.8 percent. Since irrigation requires labour, labour employment and real wages rise slightly. But this labour demand effect on irrigation is not very strong due to the inelastic final demand, which curtails output. Residual farm profits therefore decline by 4.8 percent due to higher labour costs and lower output prices associated with domestic absorption. Incomes of the landless are predicted to rise modestly from this (2.9 percent), whilst large farmers lose (-0.7 percent). All urban households gain substantially with the poorest showing the largest gain (6 percent).

The second direct effect on poverty is via employment. There are two sources of additional demand for labour created by irrigation projects. Irrigation projects firstly require labour for construction and on-going maintenance of canals, wells and pumps etc. This is likely to be an important sector of employment for the poor, especially the landless rural poor or rural households with excess labour or seasonal excess labour. Secondly, increased farm output as a result of irrigation will stimulate demand for farm labour both within the main cropping season and across new cropping seasons, increasing both numbers of workers required and length of employment period. Rural poverty levels may therefore be reduced by increased employment opportunities. In addition there may be effects that extend to other areas if irrigation projects reduce migration to urban areas, and so reduce the pool of job-seekers and relieve the downward pressure on urban wages and the upward pressure on prices of housing and other urban infrastructure.
The third direct effect on poverty is via food prices. If irrigation leads to increases in staples or non-staple food output then this may result in lower prices for staples and food in imperfectly open economies or if there are significant transport costs internationally or from food surplus areas to towns or food deficit areas. Rural net purchasers of food will therefore gain from cheaper food, as will urban consumers. The share of food expenditure on staples and the share of expenditure on food tend to fall as expenditure rises, and the majority of the rural poor are net food purchasers, receiving large proportions of their income from off-farm employment activities. Hence the fall in the staple price is likely to be poverty reducing. However low-income and possibly poor, small-farmers in areas not affected by extra irrigation – non-irrigated or already-irrigated areas – may be net producers so harmed by falling prices and may even become poor, unless the increase in output offsets the price fall. Waged agricultural labourers, in addition to increased employment, will benefit from lower prices. Wage labourers will find their wage buys more food, hence will benefit from falling prices, apart from employment changes.

The effect of irrigation on prices and therefore on poverty may be particularly strong in i) remote areas or countries with high transport costs where, prior to irrigation project, food deficit had to be compensated by purchase from other regions; ii) areas with a comparative advantage in food production which can respond more strongly to the availability of irrigated land (having a surplus of land or labour) and iii) areas with high surplus output levels which can be traded in wider markets.

Net food buyers, including landless and urban, gain in all areas. However, surplus producers in non-irrigated areas and also in areas already irrigated – a bigger effect there, since they are likelier to be in surplus, or to produce traded crops – are likely to suffer a fall in demand for their products, so reducing income and employment opportunities. In non-remote areas this may not be a problem if cheaper food can be transported at relatively low unit-cost from irrigated areas, but not if the effect of food price falls outweighs the employment effect. Where transport and/or storage costs are high – e.g. in remote, inaccessible areas – then cheaper food prices elsewhere are not likely to benefit the poor, and so poverty may actually increase in some areas.

Evidence from the green revolution suggests that poorer rural regions do, in general, lose through lower farm-gate prices due to surpluses generated elsewhere through the use of HYVs. This is likely to be the case for irrigation too. Owners of land bear more of the initial losses than workers since workers can migrate or shift jobs – though many poor farmers and workers are not able to move readily from land in poorer regions and have lost absolutely from HYVs (Binswanger and Ruttan 1977; Binswanger, 1980; Binswanger and Ryan, 1977; Lipton and Longhurst, 1989).

Hence, examining the direct first-round effects, irrigation is likely to reduce poverty via increased food output, higher demand for employment and higher farm real incomes among a) net food purchasers in irrigated areas, b) net food purchasers in non-remote non-irrigated areas and c) the urban poor. Positive effects may be experienced by net food producers and waged labourers if effects of, respectively increases in output and employment outweigh effects of price falls. This is increasingly likely with liberalization of food trade, with falls in growth rate of irrigated area and with better transport and falling transport-cost/production-cost ratios. Negative effects might be experienced by surplus producers in remote, non-irrigated areas.

But the availability of irrigation also has second round effects via output, employment and prices on poverty. In the longer run, and in a dynamic, general equilibrium scenario with multiple farm outputs, irrigated land usually encourage farmers to adopt or increase their use of fertilizers, pesticides, improved seeds and other agricultural inputs, and provide the stimulus for further
research into improved plants and technology that lead to increased output, and so employment and incomes, with possible further price reductions. This ‘Green Revolution’ style virtuous circle is likely to lead to further poverty reduction.

Furthermore, irrigation gives the opportunity to switch farm use away from staples to higher-value, market-oriented products, since not all the additional output due to irrigation is likely to be absorbed in consumption, except by very small farmers (Dhawan, 1988:42). As long as the rural poor can access appropriate new technologies, possibly also requiring access to credit markets, then poverty among small producers and landless labourers is likely to fall. Irrigation does not, however, necessarily imply the production of non-food grains at the expense of food grains. While irrigation is a necessity for raising some non-grain crops (e.g. sugarcane and vegetables), many others (e.g. oilseeds and fibres) are raised in many parts of India under rainfed conditions. Moreover, the introduction of HYV seeds for cereal crops has in fact tilted the scales in favour of cereal crops to the extent that irrigation is a must for these. Punjab and Haryana, the Green Revolution states, exemplify this.

The switch of crops in irrigated areas may also create or expand demand for the crops of non irrigated areas, so leading to poverty reduction in those areas. Examples of this can be seen in the context of high yielding varieties. In India the shift from rice to groundnuts and sugar in North Arcot, Tamil Nadu and from wheat to mustard, rapeseed and groundnuts in parts of Gujarat is seen as a result of shifts into rice and wheat by lead areas in the adoption of modern varieties, which led to a reduction in supply of groundnuts etc and hence an increase in price (Lipton and Longhurst, 1989). Remote areas are however likely to remain negatively affected in this longer run scenario by high transport costs and difficult access to markets for credit, labour, inputs and outputs (IFAD, 2001). Under certain types of irrigation technology beneficial external effects on non irrigated areas may occur. in some cases, the introduction of surface irrigation through canals and tanks may raise the groundwater table since a substantial portion of the surface irrigation water seeps through the ground, improving ground water availability, which in turn improves the water yield of the nearby wells. This in turn enhances the farm output of their owners when well water is a binding constraint on their expanding farm production. This type of positive externality is a boon in semi-arid areas of low, uncertain groundwater availability and is why canal lining or adoption of highly efficient irrigation technologies may not always be regarded favourably (it is the case for the Maharashtra Irrigation Commission). However, continuous seepage without adequate measures to drain excess water could make the water table rise to the crop root zone level leading in places to problems of waterlogging and land salinization (Dhawan, 1988:35-36). This example highlights the complexity of the interactions between water users inside and outside irrigation schemes and calls for a comprehensive approach to water management in irrigation.

A second, longer-run effect on poverty is via non-farm rural output and employment. As farm output and incomes rise and food prices fall, enriched farmers and workers will increase their expenditure on non-food products, leading to increased demand for non-food goods and services and so increased employment opportunities in non-farm incomes generating activities. These may include transportation, construction, food preparation and trading.

Perhaps the biggest long-run effect on rural poverty is via effects on variance of output or employment or income at farm or small-area level. Two factors contribute to output fluctuations:

i. Natural factors (rainfall) – crop output, particularly that of food grains, is sensitive to variations in rainfall. Modern inputs like fertilizers are highly complementary with water and hence the demand for these inputs is influenced by availability of water. In areas without assured sources of irrigation the sensitivity or elasticity of output with respect to variations
Preliminary review of the impact of irrigation on poverty

in rainfall tends to rise with growth since in a year when soil moisture is adequate and the ground water table favourable due to good rainfall, use of inputs like fertilizers increases crop yields, but in bad years crop yields decline sharply, hence widening year to year differences in yields (Rao et al., 1999:15);

ii. Relative price of inputs – changes in the prices of inputs (like fertilizers) relative to crops influence the demand for inputs resulting in variations in output. Thus the elasticity of output with respect to prices is likely to rise as new technology or modern inputs are introduced (ibid.).

Irrigation not only raises crop output levels but usually cuts variance over seasons – because of double cropping for example – and over years as reliance on rainfall is reduced, at least as a percentage of the mean. Ray, Rao and Subbarao (1988:35) argue that, in comparison to non-irrigated conditions, the expansion of irrigation has contributed to a substantial extent in reducing instability in the output of food grains as well as of other crops. Because of this, the poor are less likely to need to borrow to smooth subsistence consumption levels and so avoid the high capital market access costs that they usually face. In addition, less risky production of staples or other crops allows them to take more risks with other activities, encouraging diversification into higher risk but potentially higher income activities, such as cash crops for export or new non-farm activities.

By making employment and incomes more reliable (as well as higher) irrigation protects farmers from loss of assets and also prevents peasants from getting into debt-traps. In a bad monsoon, while rainfed crops may fail, crops irrigated using groundwater usually yield well. Even if the groundwater table falls, it can recover during a more humid period. Thus, irrigation acts as a buffer against bad years and hence the deprivation and indebtedness that these years may entail. Risk of disposing of assets such as mortgaging or selling land to buy food or meet debts, are reduced. Howes (1985: 114) describes how irrigation by poor families with hand pumps has prevented them from becoming landless. Irrigation also liberates people from maintaining demeaning social relations such as with money-lenders. Chambers et al. (1989:18) state that “for resource poor farmers and landless labourers alike, it ceases to be so necessary to ‘touch the shoes of the rich’ as insurance against those dreaded bad seasons or bad times of a year when food runs out and loans are needed to survive. Irrigation thus supports self-respecting independence”.

But these effects can be eroded, even reversed, by the decline of irrigation services from existing schemes, or as schemes are expanded into new and less safe areas. Corruption can greatly increase uncertainty and so can bad management or maintenance, but extra irrigation increases strains on overview and administration systems. Spending to increase outreach of existing irrigation schemes can increase (or, probably more rarely, decrease) variance due to head-ender/tail-ender conflict and uncertainty. Any irrigation system that experiences water shortage contains inherent conflict between ‘upstream’ and ‘downstream’ farmers. Upstream farmers have first access and can enjoy relatively abundant supplies. However, downstream locations do not always have water scarcity – they may also get too much water when inadequate drainage systems prevail in the irrigation systems. The behaviour of upstream farmers determines

1 And even if it does not, the same or even a slightly higher variance, as a proportion of a much larger mean, because of irrigation, means a bigger floor on food output and/or employment

2 Also, the degree of locational disadvantage depends on the type of water control system: tail-end areas are less disadvantaged with a ‘downstream controlled’ system (found in France and French-influenced parts of Africa) than with conventional ‘upstream’ control.
when and how much water the tail-enders will get. In condition of poor irrigation scheme management, conflict and crop loss are likely to happen, particularly when water is scarce (Wade, 1988). A final point to note is that more irrigation in the same area as regards rainfall, or crop type, increases covariance and this may outweigh effect of reduced variance, leaving national employment or income or output less stable (see for example Hazell 1992).

To the extent that poor farmers do have access to irrigated land and other agricultural inputs, then the effects of irrigation via output, employment and prices, stabilization and risk reduction are likely to be positive in both irrigated areas and non irrigated but non-remote areas. Remote non irrigated areas are likely to experience negative effects if transport or other market transaction costs are significant. Finally, the greater availability of food output, lower prices and reduced pressure on urban resources is likely to be good for the urban poor.

SOCIO-ECONOMIC IMPACTS OF IRRIGATION

Irrigation projects do not only effect economic outcomes, but may have wider socio-economic effects. A very visible effect of irrigation projects are the negative health effects associated with increases in incidence of water-related diseases. When irrigation is associated with the construction of large dams, additional impacts include the displacement of large numbers of people and negative environmental effects of dam construction.

According to the World Bank, forced population displacement cause by dam construction is its single most serious counter-development consequence (Cernea, in Horowitz, 1991:168). While there is no doubt that both of these effects carry heavy private and social costs, insufficient attention to the ‘without irrigation scenario’ in programme evaluation gives rise to a devaluation of the positive economic and social impacts of irrigation works (Blackman, 2000:5, Carruthers, 1996:35, Carruthers, et al., 1997.)

The impact of groundwater and surface irrigation on physical well-being, including beneficiaries’ health, nutrition and sanitation is multi-faceted (Lipton and de Kadt, 1988). Access to irrigation may have very positive impacts on nutritional outcomes, through the availability of increased and more stable food supplies and, sometimes, cleaner water. In addition, increased income levels will allow rural producers, assuming transport costs are not prohibitive, to purchase a wider variety of foods. This should help to ensure that not only calorie intake is sufficient but that also diets are better balanced, with adequate intake of micro-nutrients.

However, irrigation, particularly involving canals, reservoirs and tanks, has a downside in terms of health as it encourages water-related diseases due to inadequate drainage and renders the microenvironment hospitable to mosquitoes and snails that spread malaria and schistosomiasis. Untreated contaminated water is also responsible for causing serious diseases, from diarrhoea (one of the main proximate causes of child mortality) to cholera. It is likely that the poor are more vulnerable to such water-related diseases. They are likely to be more exposed to sources through their work and in their homes (e.g. living beside rivers and canals, or on rivers), they are less likely to be able to prevent infection by properly sterilizing water and water utensils, and they are less likely to have access to prompt, appropriate medical treatment when they are infected, because they live in remote areas or they cannot afford the medical fees. However, some recent studies report that, thanks to the increased purchasing capacity of farmers following irrigation projects, they can afford to pay for the medical treatment they need to combat water-related diseases.
These problems are much less serious with some sorts of irrigation. For example field-to-field water in paddies (such as liyaddes in Sri Lanka) does not stagnate so is not a serious problem. In addition, tube-wells can mean cleaner drinking water than before, though pollution problems (nitrate and nitrite from fertilizer) need watching. Finally, it should be noted that in many places, in particular in humid regions, the condition for the propagation of water-related diseases already existed before the development of irrigation.

THE IMPACT OF IRRIGATION ON THE ENVIRONMENT

Another potentially large source of negative effects of irrigation are the environmental impacts of irrigation schemes. The construction of some schemes – large dams and canal systems – are associated with particular environmental problems such as loss of natural habitat. Generally, irrigation projects have also further detrimental impacts on the environment beyond the construction phase. Water loss through unproductive evaporation, seepage and percolation, possibly inducing problems of waterlogging and salinization have been found to be important potentially negative consequences of irrigation. The question to know if the poor are more likely to suffer from these effects than the non-poor depends very much from one case to the other.

SUMMARY

In summary, there are a mixture of short-run and long-run economic, socio-economic, environmental and political effects of irrigation that may have adverse or positive effects, and may affect different types of poor people (landless labourers, small farmers and the urban poor) in different ways. It is likely that cheaper, more abundant and stable food supplies, more farm employment, stabilization and risk reduction, and spill-over effects to non-farm activities will be poverty reducing for large categories of the poor, although some groups, such as small food surplus farmers in very remote rural poor, may be negatively affected. However, the negative externalities of irrigation – on health and the environment – may be locally very damaging. We present some evidence below that illustrate the gains and losses from irrigation and describe the circumstances under which gains to poor farmers are less than those that accrue to other farmers and land-users. This conclusion, showing the variety of possible situations, calls for a special attention in developing irrigation projects. In a ‘pro-poor’ approach to irrigation development, a careful review of all possible impacts on the poors should help enhance the positive impacts and mitigate to possible negative impacts.
Chapter 4
A review of the evidence

Farm output, rural employment and prices

Context and evidence of increased production

According to the FAO world agricultural crop production in the thirty-four year period from 1996 to 2030 is projected to increase by only 57 percent, against 117 percent in the previous thirty-four years (FAO, 2002). However in the case of developing countries the predictions during these two periods is much higher, at 70 percent and 175 percent respectively. This means that by 2030 developing countries will account for a massive 75 percent of world crop output.

In comparison with rainfed farming, irrigation involving double cropping and Green Revolution technologies may increase the area cultivated, output per unit area and farm incomes. Under ideal conditions, in tandem with increased agricultural output and efficiency, irrigation and water management aims for an equitable distribution of water supply to farmers both upstream and downstream. However, irrigation may affect rich and poor farmers differently, because of differences in access to water.

A key factor in analysing the impact of irrigated agriculture on the incidence of rural poverty is the extent to which productivity gains ‘trickle down’ through increases in income and employment for all categories of the poor. In most cases there is an inverse correlation between output and income on the one hand, and rural poverty, on the other (Fan, et al., 1999:3). However the situation is not always clear-cut. The choice of crop also affects employment in irrigated areas, as crops such as chillies, rice and cotton may require more labour days in comparison with sugarcane (Chitale, 1994:388). While HYVs and irrigation technology have been major ‘engines of growth’ in rural India, for example, there are major inter-state variations. Richer states such as Punjab and Andhra Pradesh have higher adoption rates of HYVs, while poorer states such as Orissa and Bihar have lower adoption rates, and arguably as a result, a higher overall rate of rural poverty (Sen et al., in Fan, et al., 1999).

Irrigation can make a big contribution to output and incomes. In the case of the FAO second irrigation system rehabilitation project in Pakistan, over a five-year period farmers on the rehabilitated distribution canal maintained cropping intensities and farm incomes, while those on the non-project distribution suffered an 8 percent reduction in cropping intensity and output (FAO, 1996:2). However in the absence of adequate monitoring and baseline data, project achievements in terms of equitable water supply and poverty impact were at times unclear.

In recent attempts to rejuvenate the ancient tank networks, Sri Lanka’s Mahaweli programme increased total food production by 550 000 metric tonnes annually, and virtually doubled the country’s total power-generating capacity (613 megawatts compared to 325 megawatts from other sources) (Mahaweli Authority of Sri Lanka, 1992a and 1992b). Although precise figures
are unavailable, it is argued that the programme also eased the unemployment situation in the country (Dunham, 1983).

Dhawan (1988) finds that by the late 1970s income in irrigated areas had risen across India, though not uniformly. In the Indus basin average income rises from about Rs 350 to about Rs 1,830 (1970-71 prices); in the Gangetic basin from Rs 440 to Rs 2,200; in the southern peninsula from Rs 530 to Rs 2,225; and from Rs 260 to Rs 4,550 in the Deccan plateau. He also finds evidence for yield and output stability and drought proofing effects of irrigation, which also varied across states (see below).

Use of irrigation may also have (positive and negative) external effects on non irrigated farming. Gadgil (1948; cited in Dhawan (1988)) found some negative external effects of irrigation on non irrigated yield. Introduction of canal irrigation in a tract of western Maharashtra, India, led to a steep rise in the demand for farm-yard manure. This was due to a change in the crop pattern to sugarcane – a heavily manured crop – that resulted from the development of canal irrigation. The rise in demand for manure by sugarcane growing farmers was met by purchases from dryland farmers located outside the canal command which had an adverse impact on yield levels in dry areas. Epstein (1962 cited in Dhawan 1988:33) analysed socio-economic changes in two adjacent villages in southern Karnataka, one receiving canal water and the other continuing traditional dry farming. Farmers in the irrigated village took to sugarcane cultivation, increasing demand for male labour, met by the dry farming area. While this created new employment opportunities, farming was neglected in the dry area and there were adverse impacts on land productivity. The author ascribes greater dependence on female labour as the cause, one presumes, was because women had limited knowledge of this non-traditional activity, or because farming implements were unsuitable for them.

The special role of groundwater

However, the impact on output will also depend on the type of technology implemented. Dhawan (1988:27) reports that groundwater irrigation performs better than surface water because farmers have better control over supply. Individually owned tube-wells in Punjab and Haryana enhance farm output by about 28 quintals/ha, which is twice the level for public canal irrigation. In Tamil Nadu and Andhra Pradesh the additional output due to the introduction of one hectare of irrigation facility varies from 12–16 quintals in case of tanks; 15–21 in case of canals; and 34-36 in case of wells (primarily dug wells equipped with pumpsets). Over time, the productivity of groundwater-irrigated land has risen faster than surface irrigated.

Dhawan (1985 cited in Chambers et al. 1989) shows that in four Indian states the output impact of groundwater per net irrigated hectare was roughly double that of canals (see Table 4).

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Output impact of groundwater, canals and tanks, India 1977-79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonnes of food grain per net irrigated hectare additional to rainfed yield</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Groundwater</td>
</tr>
<tr>
<td>Punjab</td>
<td>4.4</td>
</tr>
<tr>
<td>Haryana</td>
<td>5.3*</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>5.2</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>6.0</td>
</tr>
</tbody>
</table>

*The groundwater impact of Haryana is higher than for Punjab partly because non irrigated yields were lower. Haryana figures are for 1976-77 and 1978-79.

Sources: Dhawan (1985:11 and 13), Chambers et al. (1989:36)
Among lift irrigation systems, own tube-wells ranked the highest in terms of quality of irrigation service. Other options such as depending on other private tube-well owners or on state tube-wells are inferior.

The effect on yield will also depend on ownership status. Lowdermilk et al. (Tiffin and Toulmin 1987:6; Chambers et al., 1989:37) have shown in a study of lift irrigation systems in Pakistan that wheat and paddy yields rise as farmer control over supply improves (see Table 5).

The ability to extract and appropriate groundwater depends on rights and access to the land above it. Groundwater is not a restricted private resource and can be appropriated by lift irrigation (as well as by crops and trees). In the absence of a clear law defining and enforcing ownership and use rights, groundwater is appropriated by those who command the land over it and who have the means to lift it. Complications also arise from links between groundwater and surface flows. Surface flows replenish groundwater. Thus, groundwater and lift irrigation often gain from canal irrigation (Chambers et al., 1989:28). Seepage and recharge have increased with new canal irrigation. In Punjab, in 1934, rainwater contributed 80 percent of total recharge of groundwater. By about 1980, the percentage contribution of rainfall dropped to 51 percent. Of the rest, 39 percent was from seepage from canal irrigation and 10 percent from seepage on land irrigated with groundwater (Sangal 1980:8; Chambers et al., 1989:29). Thus, in the case of Punjab, a rapid spread of canal irrigation led to a rapid rise in groundwater potential.

Production linkages and farm-non farm linkages

Production linkages within the rural areas are created by measures, such as irrigation, that raise crop production and incomes. Johnston and Kilby (1975), and Haggblade et al. (1987) highlight the potential importance of production linkages for India, Pakistan, and Taiwan. In addition to farmer demand for fertilizer and production input, they emphasize the importance of other backward linkages from small farm agriculture to local blacksmiths and equipment suppliers. Mellor (1976) also talks of the potential power of agricultural consumption linkages since farmers also purchase consumer goods. Using Indian data, they conclude that middle-sized peasant farmers (as compared to large or urban farmers) spend incremental income on labour-intensive rurally produced goods, hence generating important second-round demand multipliers.

Several empirical studies have documented the power of farm-non farm linkages in Asia. Based on data from India, Rangarajan (1982; Ibid.), Mellor and Lele (1973; Ibid.) and Mellor and Johnston (1984; Ibid.) estimate economy wide agriculture-to-non-farm income multipliers in the range of 0.7. Haggblade et al. (1987) estimate rural agricultural growth multipliers to be of the order of 1.5. In other words a dollar increase in agricultural income will generate an additional 50 cents in rural non-farm goods and services. However they find that African

Table 5

<table>
<thead>
<tr>
<th>Water supply situation</th>
<th>No. of farms</th>
<th>Wheat (kg/ha)</th>
<th>No. of farms</th>
<th>Paddy rice (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No control (no tube-well)</td>
<td>170</td>
<td>1 681</td>
<td>75</td>
<td>1 308</td>
</tr>
<tr>
<td>Fair control (public tube-well)</td>
<td>33</td>
<td>1 868</td>
<td>13</td>
<td>1 775</td>
</tr>
<tr>
<td>Good control (purchase from private tube-well)</td>
<td>133</td>
<td>1 962</td>
<td>35</td>
<td>1 962</td>
</tr>
<tr>
<td>Very good control (tube-well owner)</td>
<td>42</td>
<td>2 242</td>
<td>9</td>
<td>2 148</td>
</tr>
</tbody>
</table>

Source: Lowdermilk et al. (Tiffin and Toulmin 1987; Chambers et al. 1989:37)
Chapter 4 – A review of the evidence

multipliers are lower than those in Asia, attributable to the combination of different policies and natural environments. The nature of African rainfall patterns and geology of river basins preclude cost-effective irrigation on a scale as large as Asia. Thus, backward linkages into pump supply, canal construction and maintenance, that are important in Asia, are not available in Africa. Population density is also lower in Africa requiring large geographic catchment areas to support minimum viable scales for business. This diminishes the competitiveness of rural non-farm producers competing with large urban suppliers. In addition, African consumption patterns are less diversified into non-foods than in Asia (Haggleblade et al., 1987).

Income stabilization

Irrigation also has an important effect on stability of output and employment, and thus income. Dhawan (1988) and Ray et al., (1988:45) compare fluctuations of irrigated and rainfed farming for 11 Indian states between 1971 and 1984. The calculations (presented in Table 6) indicate that the state-wise net effect of irrigation – net of possible effects of correlated movements between outputs of crops within and across states – is to stabilize crop production: the standard deviation of annual aggregate crop (food grains and all crops) yield and output growth rates under irrigation is less than half of that under rainfed agriculture. Inter-state comparisons show a gain in output stability in 9 out of 11 states. The stability gains from irrigation however are mainly confined to areas with low and medium rainfall, as for example in the case of Andhra Pradesh, where the irrigated section achieved a 35 percent lower coefficient of variation of output and yield than the non irrigated segment. The study also indicates irrigation’s significant ‘drought-proofing’ consequences – the reduction in irrigated output during the drought of 1972-73 was only seven percent below trend level in contrast to 20 percent in the non irrigated segment. In 1979-80, the reduction was 10 percent and 20 percent respectively (Dhawan 1988: 27-28).

Stability cannot be achieved though irrigation only. Dhawan (1988:159) states that one reason for stability of area and yield of irrigated farming in Punjab is the central price support for wheat and paddy, the two principal crops that predominate irrigated agriculture in the state. He further suggests that farm output stabilization cannot be achieved merely through a reliable system of irrigation. In the absence of an adequate price support, fluctuations in the irrigated output can be quite high as farmers adjust their area and input allocations in a regime of uncertain farm product prices. Additionally, substantial additions to crop output, resulting from an accelerated expansion of irrigated capacity, are likely to reduce prices of crops that experience growth faster than their demand and, in the absence of price support and cost-reducing technological change, provide disincentives to intensify farming under irrigated conditions, lowering the potential of investments in irrigation to further expand output. Since the unit cost of establishing and maintaining irrigation capacity tends to rise, while farm product prices tend to diminish, returns to irrigation investments are likely to diminish unless the output impact of irrigation rises to compensate for the rising cost. In other words, one needs to improve the

<table>
<thead>
<tr>
<th>TABLE 6</th>
<th>Instability* in irrigated and non irrigated farming, India 1971-84</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrigated</td>
</tr>
<tr>
<td>Food grains</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>2.42</td>
</tr>
<tr>
<td>Yield</td>
<td>6.72</td>
</tr>
<tr>
<td>Output</td>
<td>8.37</td>
</tr>
<tr>
<td>All crops</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>2.40</td>
</tr>
<tr>
<td>Yield</td>
<td>5.87</td>
</tr>
<tr>
<td>Output</td>
<td>7.34</td>
</tr>
</tbody>
</table>

* As measured by standard deviation in annual growth rates

Source: Dhawan (1988; Ray et al., 1988:45)
general environment under which the farmer practices irrigation, rather than simply improving management of irrigation (Dhawan (1988: 239).

There is also evidence that the degree of stability is affected by the type of irrigation. Haryana and Punjab, in particular, experienced large gains due to extensive development of private tube-well irrigation. Relatively small gains in Tamil Nadu and Andhra Pradesh can be linked to dependence on tanks which are sensitive to rainfall variations and are typically less reliable than individual tube-wells.

In addition, some positive externalities were noted. Irrigation development has had a positive external effect on the stability of the rainfed segment in some areas (by improving soil moisture through seepage of water) such as in Punjab, whose rainfall segment appears to be stable despite a natural environment that is unfavourable for stable agriculture.

Equity issues and governance in water management

There is some evidence that corrupt practices can reduce beneficial output and stabilization impacts of irrigation, particularly for tail-enders. Based on a study of a village in Andhra-Pradesh, India, Wade (1988) describes some of the ways in which farmers try to get an assured supply of water for paddy. These, very often illegal, means may involve enlarging the official canal outlets, breaking off gates so the outlets cannot be shut, cutting extra outlets in the canal banks, blocking the flow of water immediately downstream of an outlet to force more water through, or bribing officials to force more water along the distributary. Use of some of these methods in upstream villages squeezes water supply to villages downstream, so that farmers lower down have to exert themselves even more to protect their supply.

The author argues that locational advantage is difficult to overcome. If farmers near the outlet wish to use more water for their paddy, farmers further down, on the same field channel may find their crops getting very little water and too late and thus have lower yields. One response could be to shift out of water intensive crops like paddy, but small farmers seem to prefer to continue to grow staples even if they are growing cash crops as their main source of income. Another is to organize irrigation through common irrigators, i.e. a collective farmer-controlled organization that enforces farmers to clear their field channels by refusing to deliver water down an ill-kept tract.

A study of tank irrigation systems in Rajasthan shows that tail-enders often have problems in receiving water particularly in years of low rainfall when tanks have filled only partially and the need for irrigation is acute. At such times, the problems of equitable distribution of water between head reaches and tail farmers worsen. In an average year tail-enders hardly manage to irrigate once while head-reach farmers are able to irrigate three times (Shah and Raju, 2001:9)

Impact on employment opportunities

Just as irrigation can generate a stable flow of income through increased intensity of cropping and improved yields and more stable yields across seasons and years, it may also augment employment opportunities, in-migration and real wage rates. This is the case in both surface and groundwater irrigation via tube-wells. For example, although the FAO groundwater development project in Indonesia had a very low ERR of just five percent, the project had positive impacts on employment and income generation through increased agricultural production including HYVs and as a consequence, increased food security (FAO, 2000:3). Although the ERR was low it is likely that the poverty impact was much higher.
Further evidence of the beneficial effects of irrigation on employment can be found. The ILO’s Bhorletar project in Nepal led to an intensification in production of rice and wheat in hills through an increased cropping index and to employment to reduce out-migration (Martens, 1989b). At the pre-project stage, demand for agricultural labour was a mere 24,104 labour days year, but with project implementation this increased to 105,000 labour days per annum, absorbing 25 percent of the employment among smallholders. Moreover, the 21 percent deficit in rice was eradicated.

Irrigation facilities also require labour and other domestic inputs for their construction and maintenance. A project in Nepal that used labour-intensive construction to provide irrigation increased production potential by over 300 percent and income by over 600 percent, contributing immensely to food security (IPTRID, 1999:3). Increased government investment in infrastructure facilities such as roads and dams also increased non-agricultural employment and real wages in ‘irrigated’ areas, contributing to poverty reduction. However, even in large-scale multi-purpose dam and resettlement schemes, construction is encapsulated into 3–4 years, an employment ‘boom’ that gives rise to massive under- and unemployment once dam construction is finally complete. In light of this, employment generation also needs to be actively promoted along with irrigation. However, it is sometimes argued that increases in the real wage rate in fact outstrip increases in agricultural labour productivity, at times even rising when productivity is on the decline (Bhalla, 1997; Fan, et al., 1999:4). Yet even in India the increase in real agricultural wages is mainly due to the share of the rural populace employed in off-farm activities (Mukherjee, 1996 and Sen, 1997; Ibid.).

When two or three cultivators a year replace one, the need for labourers and resource-poor farmers to migrate diminishes and may disappear. Irrigation ends the need to migrate and families can stay together; it also makes it less difficult to send children to school. According to IFAD (1984) in Chambers et al., 1989) in one part of Maharashtra irrigation development made it possible to send girls to school for the first time. There may also be indirect gains to other poor people in areas which absorb the outmigrants as the competition for work reduces and wages may even rise (Chambers et al., 1989).

However, over time the higher demand for labour in irrigation schemes may therefore prompt a higher supply of labour, in turn pushing down real agricultural wage rates. As Lipton (1994:2) points out, population growth increases the supply of labour as well as demand for food relative to labour demand and output, prompting nominal wages to decline, and food prices to rise. Higher population pressures in irrigated areas also make land costs higher, and increase farm gate prices (Lipton and Longhurst, 1989:216).

In the case of groundwater irrigation, it has also been observed that when there is short-term drought, investments in labour and related inputs will not be lost (Burke and Moench, 2000:23). In areas of high water tables the relatively low cost of shallow wells make garden irrigation possible. Indeed many agro-pastoral communities in arid parts of Africa and Asia rely entirely on groundwater development. Moreover although recent techniques of drilling are increasingly less labour intensive, due to additional indirect employment created, groundwater irrigation has ripple effects and augments employment throughout rural and peri-urban areas (Burke and Moench, 2000, 29-31).

Food prices

In considering the causal connections between output, prices, consumption and well-being it is useful to distinguish between producer or wholesale prices on the one hand, and retail prices,
on the other. The prices of commodities consumed by the rural poor are a significant contributing factor in explaining variations in rural poverty (Fan, et al., 1999:3) and even though irrigation leads to increased output the link to increased food security is not unambiguous as abundant food supplies, even at modest prices, do not guarantee food security at the household level if those households are unable to work or produce in order to purchase food. The very poor spend in the range of 50-80 percent of their income on food and water (World Bank, 1996, Lipton, 1983; IPTRID, 1999:1). Below the dollar poverty line, typically 70-80 percent of consumption (including the value of self-consumed farm produce) is for food and 50 percent of total self-consumption is for staples. According to global food projections in the next three decades food prices will be either stable or decline. Rosegrant and Perez (1997:23-24) argue that irrigation investment in Africa may have a significant impact on increased food production and lower world commodity prices and thus poverty.

Poverty reduction as an objective in irrigation projects

In practice few projects and project evaluations refer to poverty reduction as an overarching goal or purpose, or attempt to evaluate the impact of the irrigation project on poverty. Perhaps an exception to this is the World Bank’s salinity control and reclamation project in Pakistan that aimed to privatize tube-wells. Although actual economic rate of return (ERR) was lower than anticipated and stood at 18 percent (compared with a projected ERR of 23 percent), tube-well owners received higher returns than others. Further, there were increases in high value crops, and while wheat and rice predominated, there was a discernible shift towards fodder and sugarcane cultivation. Cropping intensities in smaller farms (under 2 hectares) were higher than in larger farms (over 10 hectares), standing at 118 percent and 105 percent respectively. The project also conceived equity as a major concern, hence introduced subsidies for smallholders only. Albeit only mildly positively, actual equity was improved as purchasers of groundwater who did not control wells were able to benefit through the lower water price prompted by the high number of wells now available. But subsidies are not always a good idea, even if carefully targeted. Corruption can mean subsidies fall into the wrong hands and subsidize extra use of groundwater, and hence lower the water table – including denial of water to poor existing users with shallow-draft tube-wells – may be neither pro-poor nor sustainable. The IFAD-led Jahally-Pacharr smallholder rice project in The Gambia aimed to simply ensure the cultivation of two crops per year, yet failed to conceptualize equity in a purposive manner (von Braun, et al., 1989). The overarching goal of the ILO Mnenia project in Tanzania is quite similar in terms of overall purpose of allowing double-cropping and aims to build a new main canal to provide supplementary income for the dry season, but has little explicit reference to poverty (Martens, 1989a).

Socio-economic impacts: resettlement and health

Experiences with involuntary resettlement in India, Thailand and Ghana (but not only) found that these projects and programmes generally failed to comply with eligibility and entitlement criteria, the ‘acid test’ of all recent irrigation projects (World Bank, 06.02.98:1). With the exception of Pak Mun (Thailand) which enjoyed exceptionally generous land compensation rates, the majority of settlers were dissatisfied with compensation for lost assets and resettlement to new homes, farms and off-farm work. In the case of Karnataka (India) the water reached

1 This finding greater – cropping intensity on smaller farms – is almost universal, but there is a problem pertaining to the direction of causation
families before the new sites were ready to receive it, requiring boats and helicopters to evacuate large numbers of people. Meanwhile, in Kedung Ombo (Indonesia) a significant minority of people refused to vacate, and there were protests in Narmada (India) (World Bank, op cit., 2 and Drèze, et al., 1997:47). However with time relocation has proved to be more satisfactory. Regional growth and job creation often buttresses the negative impact of resettlement, as income levels increase above the pre-dam levels for the majority of displaced families. This has been noted in project evaluations with three resettlement programmes in China (Shuikou, Pak Mun and Kedung Ombo), as well as a programme in Brazil (Itaparica) and Togo (Nangbeto).

Turning to health impacts, there are both negative and positive impacts. The biggest negative impact is via water-related diseases, especially malaria. For example, when the Karnataka Irrigation Project was approved in 1978, the river valley was malaria free, yet owing to massive vegetation which choked drainage canals, and seepage that caused pools of standing water malaria returned (Jones, 1995:54). There is often inadequate baseline data from which to make accurate assessments of project impact over time (Kerr and Kohlavalli, 1999:148). There appears to be information on differential exposure and susceptibility to water-related diseases but it seems likely that those living and working closest to surface water irrigation sources will face higher risks. If these people form a large proportion of the poor, and this too seems likely, then the poor may bear the brunt of the negative health impacts. However, irrigation may also have positive impacts on health. Higher yields and lower prices mean greater calorie and micro-nutrient availability to households; higher incomes, whether through output increases or increased demand for labour, mean more resources are available for prevention of disease, through safer and better storage and preparation of drinking water and food, and resources for prompt, appropriate health care (see Lipton and de Kadt, 1991). These positive effects are likely to be felt by the poor only to the extent that their yields, outputs and incomes rise with irrigation. If the irrigation technology bypasses the poorer residents and workers in the area, or they are excluded because they are tail-enders in a non performing system or they do not have adequate access to the decision-making institutions that control water use and distribution, then they will only experience the negative impacts. The difficulty is that the negative effects are public bads while the positive effects of irrigation on health are to a large extent private benefits.

ISSUES OF IRRIGATION, POWER STRUCTURES AND RIGHTS FOR THE POOR

Both surface irrigation as well as groundwater development have become sources of inequality and conflict. As Janakarajan (1999) and Maskey et al. (1994) have documented, when water tables recede competition may arise between owners and users of wells. This is also the case between well owners who own wells of different depth, since wealthier owners have the capacity to deepen wells. Several factors curtail poor people’s access to lift irrigation. For one, capital investments to establish lift irrigation systems (LISs) are high, and these are still higher in water-scarce regions. Further, there is risk of capital loss from well failure. Large overheads give rise to economies of scale in LIS operation which resource-poor farmers with small fragmented holdings find hard to exploit. Thus, group organization is often a good way of improving poor people’s access to water from lift irrigation. There are three types of groups that could be formed: i) water user groups around public tube-wells established and operated by many State governments; ii) NGO-induced lift irrigation groups, particularly in water scarce regions – these groups generally help promote equitable distribution of water where it is scarce and is likely to be controlled by the rural élite; and, iii) spontaneous lift irrigation groups – these are small, informal, and under-perceived, but the most extensive (Chambers et al., 1989:79).
Case studies from Bangladesh suggest that irrigation is fundamental for small farmers’ survival strategies in both private and public schemes. Further, the landless have not been able to regain land lost to irrigation (Wood, et al., 1991:74). Rather, the landless poor continue to lose through the sale, mortgage, leasing and sharecropping of land to richer farmers who have the requisite inputs including credit. Hence the FAO-initiated National Minor Irrigation Development Project in Bangladesh (Cr.2246-BD) may have paid insufficient attention to group formation and subsequent reduced demand for deep tube-wells and in turn, project impact (FAO, 1998:iii-iv). In the case of the FAO Private Tube-well Development Project in Pakistan (FAO, 1995:iv-v) considerable investment to integrate private tube-well development with electricity distribution would have been all but lost, if not for the existence of alternative village electrification. Ironically, agricultural production and equity measures could also have improved through less costly introduction of deep tube-wells. Indeed, the evaluation of the FAO Second Irrigation Systems Rehabilitation Project in Pakistan (FAO, 1996:iii) reveals that the agro-ecological impact and equity of supply to watercourses by those at the tail end have improved upon introduction of tube-wells.

Research conducted in the farmer-constructed and managed Thulotar Kulo irrigation system in Nepal focuses on water rights and dispute management in terms of the relationship between customary laws and state laws as they pertain to land and water rights. Water and land disputes may range from simple social turmoil to civil strife. Such disputes are limited under farmer managed irrigation systems, although it does not necessarily follow that the outcome of disputes is negative. WUAs are sufficiently informal to enable localized conflict to be managed by farmers, yet ‘unperceived injurious experiences’ are equally responsible for hindering farmer participation in irrigation projects (Poudel, 2000:4). Differences in gender, caste, age, economic status and normative rights may result in variations in dispute management techniques, speed and cost. However disregard to hidden power structures within the village microcosm could result in injustice being unnoticed by observers, including policy makers, non-governmental organizations and other civil society organizations, allowing adverse situations of disadvantaged groups (most likely the poor as a whole but also women and landless) to perpetuate.

Pricing of Irrigation Water

It is increasingly argued that water markets and water pricing may play a role in increasing the efficiency of water use, which is of particular relevance in arid areas. As countries are discussing the need and ways to adopt water-pricing mechanisms to regulate the allocation and consumption of irrigated water, the question is to know how and in which conditions such mechanisms can help reduce poverty and improve equity in access to resources.

Recently, loans for investment in irrigation often include a component calling for some form of water pricing. Equity in the allocation of irrigation water touches on long term fixed costs and the ‘fairness’ in allocating this scarce resource across economically disparate groups (Johansson, 2000:vi, 7). The concept of fairness is aimed at increasing the welfare of the least powerful, and it is sometimes argued that in the case of groundwater and surface irrigation water pricing is not effective in redistributing income (Tsue and Dinar, 1995; Johanssen, op cit., 7). In irrigated agriculture markets in tradable water rights already exist and the value of usufructory water rights may be capitalized into the value of irrigation land. In groundwater development a range of interventions has been employed to influence demand, such as pumping quotas and charges, and transferable rights. Groundwater subsidies, as with credit for irrigation purposes, also disproportionately favour the rich.
Equitable access to groundwater is an issue in poverty reduction. Private lift irrigation systems (LISs) are considered to be the most successful form of irrigation where access to water is through markets (Chambers et al., 1989), but this doesn’t automatically mean that it has a positive impact on the poor. Moreover, in India at least, LISs are dominated by private owners – in 1988, private LIS owners accounted for over 95 percent of the groundwater development. Their number has increased since then at the rate of 100 000 per year (Kolavalli and Chicoine 1987; Chambers et al., 1989:98). Chambers et al. (1989) argue that while it may be important to reform the public tube-well programme and to encourage and support NGO experiments with LIS groups, it is important to realize that neither of these offer the speed or the scale necessary to achieve major impacts on rural poverty. Thus, it is important to devise policies that influence the actions and decisions of private LIS owners and hence ensure equitable access to groundwater.

Private water markets supply many resource poor farmers. Across India water prices with diesel operated pumps can vary by a multiple of three (Dhawan, 1988). This is explained not by aquifer conditions but by degrees of water sellers’ monopoly power and by incremental costs. With electric LISs, water prices are much lower in States with flat electricity tariffs, since these reduce incremental pumping costs close to zero, and would therefore tend to be more pro-poor, provided that the poor have access to tube-wells and pumps. Although the private initiative gives inequitable direct access to irrigation water, the landless poor and the resource poor farmers have benefited through increased labour demand and wages, opportunities to buy water, and appreciation of land values (Chambers 1986; Shah and Raju 1988; Chambers et al., 1989). It also happens that small and marginal farmers sell water to make their LISs viable.
Chapter 5
Assessing the impact of irrigation projects on poverty

There are many different types of irrigation. Each has the potential for poverty reduction, but will also entail different social, environmental and economic costs, which may differ across different groups. For example, among private means of irrigation, the comparative advantage of small over large farmers may be viewed as follows: small-scale irrigation works are heavily reliant on family labour in their construction and operations and are therefore better suited to the resource endowment of small farmers; irrigation works that require minimal use of human or animal labour but make a heavy demand on the scarce capital resource are better suited for large farmers (Dhawan 1988:215).

Given the previous discussion, we propose that appraisal of irrigation for poverty reduction should account for each of the following (in no particular order):

• cost of construction/installation (affordability);
• the land area required to install/construct the project and if it involves huge displacement;
• participation of the communities that are likely to benefit from the project; and thus whether the project addresses issues of empowerment, capacity building by training villagers to maintain the irrigation systems, etc.
• the extent of employment the project generates at the time of construction, in maintenance, and post-project (in terms of increase in agricultural labour needed because of increase in cropping intensity);
• the extent of increase in yields/marketable surplus/incomes;
• distributional issues and equity, e.g. head-ender/tail-ender problems;
• environmental impacts associated with a particular type of project (since they may affect the sustainability of the livelihoods of the poor);

Differential effects by technology type

We discuss the above points with respect to two major categories of irrigation systems: large gravity irrigation schemes (canals), and irrigation from tube-wells. In addition, we briefly discuss the effects of dam development on poverty.

i. Canals

Canal projects are large-scale, expensive forms of irrigation. This section compares two main canal projects, in Tanzania and Nepal (taken from Martens, 1989). Mto wa Mbu, Tanzania has a command area of 800 ha with 54 km of canals. The total construction cost (including labour costs) in current prices was US$2 034 198 (US$926 075 excluding labour costs). Bhorletar, Nepal (Martens 1989) is a much smaller project, with a command area of
200 ha gross. It has a 5 km long canal and the cost of construction is US$812 378 including labour (excluding labour the cost is US$455 812).

At Mto wa Mbu overall cropping intensity increased from 122 percent in 1980 (before project) to 141 percent at full development of the project. Crop production over the same period also showed an increase (e.g. for maize from 1 013 tonnes to 1 587 tonnes in 1985 and was expected to rise to 2 378 tonnes with full development). Crop production in case of Bhorletar increased by 232 percent – from 363 tonnes pre-project to 1 205 tonnes post-project. The total marketable surplus was estimated at about 800 tonnes post-project and was expected to cross 1 000 tonnes once the full potential was developed. However, lack of markets made it difficult for farmers to sell this.

Incomes in agriculture in Mto wa Mbu showed an increase from T. Sh 33 382 per hectare to 38 008 between 1980 and 1985. In case of Bhorletar, the total revenue generated from crop production pre-project was estimated at NR 1 281 000 and post-project, NR 4 289 000. The financial surplus per hectare was NR 3 032 000 pre-project and NR 18 277 000 post-project. This shows the enormous income-generating potential of the canals. However, the gains were not evenly distributed because of land inequality – gains to small farmers were limited in Bhorletar since 45 percent of farms have less than 0.5 ha. However, because of employment generation, in the end small farmer incomes rose by almost as much as rich farmers - per capita incomes increased by 3.1 for the former and 3.2 for the latter (and middle classes benefited the least). Per capita income for small farmers was brought above basic food requirements after two years of project operation.

In addition, because of market bottlenecks, large farmers were not able to dispose of the surplus and were reluctant to increase their cropping intensity, reducing potential employment opportunities for landless or surplus-labour farmers. At the same time however, crop prices were likely to fall if the area was opened up to major market centres: net effects on farmer income were of uncertain sign (Martens, 1988).

Because canals (and, more generally, large-scale irrigation) have the potential to greatly improve cropping intensity and incomes over a wide area, effects on employment are also likely to be large. For example, Mto wa Mbu created 572 000 work-days for unskilled and 7 700 for skilled labourers (masons, carpenters) in the construction phase of the project and Borletar, in its four years of construction, required 225 279 work-days of unskilled labour and 31 596 work-days of skilled labour. This increase in employment benefited mostly the poor small farmers – during 1981-82, when the project was initiated, unemployment for this group dropped by nearly 14 percent, increasing again when construction came to an end. Because canals (as well as rivers and drains which are a part of the irrigation network) require regular maintenance the project was also expected to generate much post-construction employment – for example cleaning of the canal before the rainy season and prior to the start of a new agricultural season was estimated to generate employment in the order of 30,600 work-days per year (Martens 1987; Martens 1989:89).

Permanent on-farm and off-farm employment stimulated by large-scale irrigation is likely to be the most important from the perspective of rural poverty reduction. For example, Bhorletar contributed to an increase in total annual employment in agriculture of 92 percent as compared to pre-project employment. This was even before the project was fully developed and is attributed to the change in cropping patterns that resulted. Pre-project total labour demand was 24 104 workdays; once the project was in operation, and under the new cropping patterns, it was 46 383. At the completion of the project, these figures were expected to rise
to 57,522 workdays. The increase in employment in agriculture absorbed about 25 percent of unemployed poor small farmers. The same trend, though observed, was less pronounced for the middle class and the large farmer groups. Martens (1989) argues that the total effect on employment was even greater because of stimulation of non-agricultural sectors.

ii. Irrigation from tube-wells and small-scale irrigation

Tube-wells can be found in small-scale irrigation or integrated in large irrigation schemes, usually in conjunction with irrigation canals. Typically, they have much lower costs of construction/installation relative to dams and canals. In Bangladesh the command area for each deep tube-well (DTW) is in the range of 20 hectares, the procurement price of which was Tk 640,000 and rental charges Tk 5,000 per year (Wood and Palmer-Jones, 1991:135). The main benefits of tube-wells are to farm income. Installation of shallow tube-wells in Terai, Nepal, led to a net increase in income from cultivation by Rs 15,224 for paddy, Rs 1,793 for wheat, Rs 736 for maize and Rs 3,502 for other crops. The corresponding net increases for those who were not (direct) beneficiaries of this scheme, were Rs 8,616, Rs 1,736, Rs 579 and Rs 2,981. Although it is not clear where the majority of poor farmers were situated and what crops they harvested, and thus what effect on income inequality there was, the spill-over implied by these figures demonstrate that, on average, farmers in both areas stood to gain from the project.

Tube-well installations do not require heavy investments, and they do not generate employment during construction. However, post-installation, they show an increase in seasonal employment, related to increase in cropping intensity. Minor irrigation, by creating a winter rice season and contributing to wheat and supplementary irrigation of the aman crop in Bangladesh, both enhances the productivity of land and increases the opportunities for employment of landless workers (Wood and Palmer-Jones 1992:148). Unfortunately employment figures pre- and post-project not available to quantify this impact. Murshid (1995:20) reports that irrigation generates higher-skilled salaried employment (as manager, linesmen, etc). It also enables fuller utilization of family labour through sharecropping opportunities for members and provides more post harvest processing opportunities for both men and women.

Unlike large-scale projects, small-scale irrigation projects may easily be designed to promote equity since it is possible to have the landless manage them. For example, in Bangladesh, Murshid (1995) reports that assigning property rights of DTWs to landless people empowers them and also promotes skill development both directly through training as well as indirectly from interaction with local bureaucracy, farmers, and NGO officials. This helps them to develop bargaining and negotiation skills and provides employment in the fields and in operation and maintenance of the tube-well. Last but not least, it gives them a status.

However, the poverty-alleviating potential for small farmers may be limited since tube-wells and pumpsets are indivisible investments and prove uneconomic for farms below a certain size. One solution is for them to enter into a co-operative agreement (Dhawan, 1988). The success of tube-wells and their rapid spread over the last 25 years have also led to a steady drop in the water table level and rise in salinity levels. In Pakistan the depth of the water table fell considerably over the period 1961-1965 (Ibid.) – which presents sustainability issues for poverty reduction in areas affected.

The Grameen Bank of Bangladesh has diversified into many activities, including management of irrigation. The number of deep tube-wells acquired by the Grameen Bank are approximately 805 (managing them under the name of a separate institution – the Grameen Krishi
Chapter 5 – Assessing the impact of irrigation projects on poverty

Box 2: The impact of irrigation on poverty: a case-study from The Gambia

Von Braun et al. (1989) studied a new rice irrigation project involving 7,500 farmers in The Gambia. The technology was in the form of mechanical pump irrigation and improved drainage for raised and tidal irrigation. Its expansion pulled labour away from other crops, reducing output of the latter, but increasing net calorie production overall. The project was likely to benefit excess farm-household or landless labour since 24 percent of the work is carried out by hired labour which played a marginal role in rice production before the project. Average labour productivity was greatest in the fully water-controlled rice fields (ones with pump irrigation). In partly water-controlled fields (tidal irrigation or improved rain-fed cultivation and drainage) labour productivity was only half of that in the fully water-controlled, though 30 percent higher than that in swamp rice.

At the sample average, the irrigation project increased real incomes by 13 percent per household. Moreover, since rice production contributed 43 percent of per adult equivalent income to the bottom income quartile and 26 percent to the top quartile, poor households gained disproportionately, and thus the new rice technology contributed to a more equal distribution of income in the area (at least in the short run). However, the study predicts that the poorest are also likely to be most adversely affected in case there is deterioration in project yields. The gains to household income raised calorie consumption, in turn improving the nutritional status of children. Mothers’ weight loss in the wet season, not only a health and nutrition problem for them but also indirectly for the children as it relates to low birth weight, was found to be reduced with increased access to the new rice land. Unfortunately without supplementary programs for child-support, the greater the access to the rice project, the more frequently mothers took their smallest children with them to the swamps, which increased their susceptibility to disease.

The introduction of the new technology led to a transformation of the status of rice, traditionally a women’s crop grown to a large extent on private farms, to communal crop under the authority of the male compound head. Thus female farmers, despite being previously allocated formal land titles, now controlled only 10 percent of their pump-irrigated plots. This change increased the burden of communal agricultural work disproportionately for women (though men’s burden increased also), reducing women’s opportunity to grow private cash crops and receive independent incomes, as well as limiting the beneficial calorie consumption effect of higher household income. However, women were not necessarily dispossessed of all individual farming rights or of an independent income. They organized private production of upland crops (such as groundnuts and cotton) and many were paid for work on the new rice fields by the compound head (von Braun and Webb, 1989; von Braun, et al., 1989:68).

(Agricultural) Foundation (GKF)). The GKF’s approach to irrigation management differs from that of public agencies in Bangladesh. This is because GKF has an explicit poverty alleviation objective. Its activities are aimed at helping the poor, the landless, and asset less and poor women and enable them to get access to resources so that they can be self-employed. It thus encourages a staff intensive policy of management of deep tube-wells. They also provide thorough staff training in order to make the schemes effective. Such investment in human resources has resulted in committed and hard working people. Moreover the GKF charges a non-subsidized fee in the form of a share of the crop from farmers who make use of their irrigation facilities (Jordans and Zwarteveen, 1994).

iii. Dams

Dams have great potential development benefit in terms of power generation, flood control, water provision for urban populations as well as for industrial development and rural irrigation and employment generation. The review of Operations and Evaluation Department of the World Bank indicates that the 50 large dams reviewed created an installed power generation capacity of 39,000 MW, replacing about 51 million tonnes of fuel in electric energy produced annually, and expanded total irrigated area by about 1.8 million hectares. Although dams generate temporary employment expansion in their construction, and then more permanent, but smaller, increases because of maintenance, probably the largest benefits are in on-farm employment, e.g. because of multiple cropping as in Tungabhadra project in South India (Kallur 1988; Chitale 1994). In Pakistan, the direct benefits from two irrigation projects, Tarbela and Mangla, were estimated at about US$260 million (annual) and the added supplies of irrigation water made it possible to grow the equivalent of two wheat crops a year on
400 000 hectares of previously irrigated land and 400 000 hectares of previously rainfed land. According to an impact evaluation, farmers with irrigated land have had increases in income which are spent on consumer goods and education. Increased farm activity also increased demand for the fertilizer and agricultural output processing industry (World Bank, 1996a).

However, social and environmental costs of large dams may be huge. The 50 dam projects reviewed by OED have displaced about 830,000 people, and only half showed a satisfactory resettlement outcome. Hirakud dam, India, built over 1948-57, displaced 100 000 persons and submerged 68 000 hectares of land (Cernea, 1997). Sardar Sarovar, India was expected to displace about 100 000 people: 30 000 from Gujarat and Maharashtra and 70 000 from Madhya Pradesh (Alvares and Billorey, 1988:16). In some cases landholders have not been compensated, like in the Semry I project in Cameroon where farmers were stripped of their land (Brown and Nooter, 1992).

There are serious issues regarding the impact of large dams on deforestation. For example, the forest area lost to hydro-electric projects in the state of Karnataka was about 41 068 hectares, 18.4 percent of the total area (Ray et al., 1988). Building of dams can also cause watershed degradation leading to sedimentation of the reservoir. New dams can create health problems in tropical areas that often have outbreaks of water-related diseases, although as OED (1996) argues, the World Bank projects reviewed successfully controlled these problems. Many dam projects have created new fisheries within the reservoirs, thus mitigating losses to fisheries, and potentially provided some (possibly landless) poor with a source of livelihood.

IMPACTS OF IRRIGATION ON SPECIFIC GROUPS OF POOR

Most of the world’s poorest live in rural areas – mostly small farmers and landless workers. Hence agricultural development is key to reducing poverty, and in particular rural poverty.

In most of sub-Saharan Africa, since most of the poor are small farmers increasing farm efficiency (by making irrigation, fertilizer inputs and new technology available) enables them to expand their sales and produce their own subsistence with less effort and less cash costs, thus stimulating poverty reduction. The issues are more complicated when the poorest groups are landless, as in South Asia, since agriculture development efforts do not affect the welfare of workers directly but through the impact on demand for labour and on the level of output prices (Binswanger and Quizon, 1986).

Measures of agricultural development enhance the efficiency of resource use. Thus, they reduce labour input per unit output. How much this is reduced depends on the source of productivity gain – for example the reduction is larger for machines than for added irrigation. Labour demand can only rise if the enhanced profitability of farming leads to an output increase which is sufficiently large to compensate for the initial reduction in labour requirements. The output expansion depends on the nature of demand for agricultural output and on the elasticity of supply of agricultural output. The demand for agricultural output is price elastic for small open economies but inelastic for closed or state trading economies. If output expansion is limited from the demand side, agricultural growth will lead to reduced agricultural labour demand, but will also lower food prices. Thus, the poorest rural groups will lose as workers but gain as consumers. The question is which effect will be more important (Binswanger and Quizon, 1986).
Binswanger and Quizon (1986) look at what happened to income of different income groups in two decades of agricultural growth in India. Then they look at technical change in different crops under alternative trade assumptions and consider the effects of expanding irrigation, declining fertilizer prices and removing trade restrictions on rice. The results indicate that consumer benefits are more important than employment effects for the welfare of the landless. They can benefit from agricultural growth only if food prices decline. However, declining prices is bad for the rural sector as a whole. The authors therefore suggest food rations and direct income transfers to assist poverty groups.

Small and large farmers can benefit to the same degree from irrigation per unit of irrigated area – that is, benefits need not rise with the size of a farm holding. This is so if there is equality in fertilizer use, which is a major source of increasing crop yield in modern agriculture. However if this equality is absent, benefits from each unit of irrigated area are positively associated with farm size.

Impact on resource poor farmers: According to Chambers et al., (1989) “the subsistence and income effects of new irrigation for resource poor farmers1 (RPFs) and for landless labourers are usually strongly positive, but they differ in form”. For the RPFs the effects are in terms of increased production whether for subsistence or for sale. This implies higher incomes (unless prices for produce fall so much as to offset gains). For RPFs irrigation means more productive work on their land. This increases intensities associated with irrigation and helps to give them productive work on more days of the year. With irrigation, the resource poor family may not have to engage in part-time work any more. Production and income is therefore generally higher and also more stable.

Landless labourers: It is likely that landless labourers would also have a net positive benefit from irrigation. For example, Kallur (1988; Chitale 1994) reports that the Tungabhadra project in Southern India showed an improvement in the condition of agricultural labourers. Murshid (1995) reports that landless labourers could benefit if they are made owners and managers of micro-irrigation works. They also gain through an increased demand for employment post-project.

Chambers et al., (1989) argue that “the most obvious subsistence and income gains from new irrigation come from work on more days of the year, especially where a second or third cultivation season is added. Reliable and adequate irrigation raises employment”. Silliman and Lenton (1987 in Chambers et al. 1989) report from evidence collected from 45 micro-studies (25 of which are form India) that there is a positive relationship between irrigation and employment, especially from increased cropping intensity. Mehra (1976; Chambers et al., 1989) disaggregated the employment effects of irrigation and of high-yielding varieties. He found that irrigation contributed more to employment than high-yielding varieties.

Ghosh (1984, 1985 in Chambers et al., 1989) found a sharp contrast between irrigated and non irrigated conditions for male labourers in two West Bengal villages. In the irrigated village there was work all year round with additional immigration of seasonal labourers at the peak periods. In the non irrigated village there were two periods with almost no work, implying that labourers would either have to seek low paid local work, migrate or suffer serious deprivation.

1 Resource poor is a term used for farms, farmers and farm families that do not have farm resources that currently permit a decent and secure family livelihood. Such families include many of those who are marginal (0-1 ha) and small (1-2 ha) farm holdings, and many others with more than 2 ha but whose land is infertile, vulnerable to floods or erosion, or subject to low and unreliable rainfall (Chambers, Saxena, and Shah 1989, p. 263)
In contrast, high intensities of irrigation appear livelihood-intensive for labourers, filling in the slacks providing for a continuous flow of cash and food to the household (Chambers et al., 1989: 16).

According to Chambers et al., (1989:17) among some common benefits of irrigation to labourers is a rise in daily wage rates; more reliable employment and income; and where labourers have to buy food, lower food prices when higher production from irrigation brings prices down.

Impact on women: Women are disproportionately represented in poverty statistics (IFAD, 2001). Failure to recognize the importance of women in agricultural activities often worsens the position of women as well as negatively affects project outcomes (Zwarteveen, 1994; Jordans and Zwarteveen, 1997). Although there is now increased recognition of the importance of gender relations for planning, designing and managing irrigation, there are few documented examples of irrigation approaches that consciously incorporate gender issues.

In Bangladesh, women’s on- and off-farm incomes have risen. The increase in labour opportunities generated by irrigation has been higher for female labour as compared to male labour. Of the women belonging to landless and marginal farmer households 67 percent reported a higher income through increased wage labour opportunities in irrigated production (Jordans and Zwarteveen, 1997). Increases in income from animal production increased incomes of both male and female workers and women reported that caring for livestock (which is primarily their role) became easier with irrigation since it increases water availability for bathing cows in the dry season. Additionally, irrigation reduces the general work burden of women because it increases access to water close to home, since water collection is primarily an activity of women.

However, whilst livestock care is easier (as mentioned above), feeding of livestock has become more time consuming – again a task that women are involved in. This is because there is a decline in fallow land – more and more land is brought under cultivation because of irrigation. In the villages from which the above observations have been drawn, irrigation has made rice cropping possible. This means an additional amount of straw is available for the livestock. The disadvantage is that it is not as nutritious as grass. However, fresh grass grows near the bunds around the rice fields and in the earthen channels. Leading the cattle to the bund sites could have a negative effect in that the earthen channels may get damaged by the cattle. Hence women generally cut these grasses and carry them. This implies increased work burden for them even though they do not report any shortage of fodder.

Irrigation also changes labour relationships. Prior to availability of irrigation, women often worked for rich households, receiving food in return. With irrigation, opportunities for income generation such as crop processing, agricultural production or working as agricultural labourers have increased. During interviews with women from middle and large land-owning families, 45 percent reported increasing difficulty in obtaining wage labourers – both male and female at peak times. Introduction of irrigation also changes labour relationships within households – female family labour is increasingly used for own irrigated production especially among poorer households.

The increased contribution to household income has resulted in greater power of women in the household. This is not only equitable but also will have functional consequences – for example, women have different priorities such as a clear preference for education of their daughters. Jordans and Zwarteveen (1997) argue that women could be empowered by involving them in cultivating land in the command areas of deep tube-wells (DTWs) and participating in water management; by allowing them to fully or partially manage DTW equipment, and in constructing earthen irrigation channels in the DTW command area.
Chapter 6
Conclusions and recommendations

Irrigation affects poverty via a variety of different transmission effects that vary by technology type and by the characteristics of different types of poor. The chief effects are via increased employment and lower food prices: most of the poor (even the rural poor) gain an increasing share of their income from employment and are net food purchasers. As well as raising mean levels of employment, output and incomes, irrigation can also help reduce the variance of each, although there may be increased covariance. However, the distribution of ownership of and benefit from water and water-yielding assets, e.g. between large and small farms, is an important issue. As some of the studies above have suggested, increases in mean yields, output and incomes are not always replicated across the distribution of farms. Although few project evaluations explicitly address the equity issues of irrigation projects it is possible to draw a number of tentative conclusions.

We conclude that irrigation in itself is an important tool in poverty reduction. It is no coincidence that regions with the best poverty reduction performance have greater proportions of irrigated land that has complemented advances in other areas of agricultural production. There are important potential benefits of irrigation through increased yields, higher and more stable outputs, lower consumer prices and greater demand for labour, that arise solely through the adoption of irrigation but can be magnified when used in combination with other inputs.

However, the poverty reduction impact of irrigation is not a foregone conclusion, and much depends on the detail.

First of all technology matters. Small scale, low cost and labour-intensive irrigation techniques are likely to be more important for poverty reduction. Irrigation techniques that can be accessed by small, capital or credit constrained farms, that use additional labour beyond the initial construction phase (either family labour or generate demand for hired labour) are more likely to be of benefit to the poor than large scale, capital intensive technologies.

But this may not be appropriate for all regions. Substantial poverty reduction in sub-Saharan Africa is unlikely to be achieved without some new large scale irrigation projects. The high costs of this, combined with future increasing pressures on water use (e.g. subsidized agriculture water use, growing domestic and industrial use) will see big shifts of costly intensive irrigation, from cereals and staples to high-value crops. This requires more water control in semi-arid areas, and lower-cost irrigated areas, for staples production and employment.

Secondly, institutions matter. In areas of extreme land inequality such as Southern Africa and maybe Latin America, irrigation inequality is even more extreme. Giant farmers have secured free water for capital-intensive use, leaving almost no water control for the labour-intensive small-farm poor. Poverty reduction demands attention to this issue. Distribution issues are central to assessing the poverty impact of irrigation. Small users and those in tail-ends of systems need to be able to secure access to water in the appropriate quantities and at the appropriate
times. Water markets and water pricing may be methods of ensuring equitable access, as well as transparent, accountable decision making institutions. Studies of successes and failures of irrigation in Sub-Saharan Africa show that a combination of supply augmentation (new development of surface and groundwater water, reuse of agricultural drainage water, industrial recycling, waste water use, water harvesting, and desalination) and demand management will be required. Effective demand management will require water resources policies involving in part, cost recovery, transfer of management responsibility, and institutional change. Both the infrastructure as well as farmer experience to exploit this potential is currently missing in Africa.

We have a number of recommendations about further research and policy making in this area.

1. Project evaluations of irrigation projects funded by donors with poverty reduction objectives need to cover not just economic and technical impacts but broader impacts on the poor. In particular project evaluations should examine the impact on yields, output, crop mix, etc. on different types of irrigation beneficiaries, perhaps classified by farm size or income group. Employment effects need to be separated into short-run construction related effects and longer-run agricultural related effects. Similarly effects on surrounding non-irrigated areas should be investigated. Ideally a before and after evaluation should be conducted, either using two surveys or recall techniques.

2. Agricultural research needs to prioritize poverty reduction objectives as much as average increases in yield and outputs. Hence research needs to focus on the types of technology most appropriate for different types of poor users and poor beneficiaries. Technology that creates demand for labour rather than replacing it is likely to be the most appropriate.

3. Project choice criteria should include not just comparisons of ERR or other efficiency indicators but also equity issues by examining the poverty reduction impact per dollar of investment, estimated using the framework sketched in this paper, or something similar. This applies to irrigation and non-irrigation projects alike.

4. Much more research is needed into the poverty impacts of irrigation projects to provide more detail on which types of irrigation are of greatest benefit to different types of poor people in different agro-ecological regions and institutional settings.
References

Alvares C. and Billorey, R. 1988. Damming the Narmada: India’s greatest planned environmental disaster. Third World Network, APPEN.

Carruthers, Ian. 1996. ‘Economics of Irrigation,’ in L.S. Pereira et al. (eds), Sustainability of Irrigated Agriculture, 35-46.

REFERENCES FOR DATABASE:

Annex

Evaluation of irrigation projects

The database of irrigation project evaluations comprises of 27 projects, mainly funded by a combination of private donors, some in conjunction with national or federal governments (in one case the source of funding was not reported). Sixteen of these had World Bank or IBRD donations, nine IDA and two ILO.

In total there are 14 canal projects under review (mainly in Asia), seven wells (of which six are specified as tube-wells and one as deep wells and conduits), two combined tube-well and canal projects, one pump and tidal irrigation project, one resettlement project, one irrigation rehabilitation project and one water-use efficiency project.

They are distributed among developing regions rather unevenly. 15 of the projects evaluated were situated in South Asia (1 in Bangladesh, 3 in India, 3 in Nepal, 6 in Pakistan and 2 in Sri Lanka), comprising of a range of canal, well and tube-well projects with a wide range of costs and command areas. Five in East Asia (1 in China, 2 in Indonesia and 2 in the Philippines) were relatively large projects involving costs of between US$33 and US$220 million and command areas between 22 000 ha and 160 000 ha. Five projects were in Sub-Saharan Africa (The Gambia, Nigeria, Senegal, Sudan and Tanzania) and involved a range of mainly tube-well but also canal and tidal technologies. The largest in this region, the Gezira Rehabilitation project in the Sudan, had the greatest overall command area (924 000 ha) and cost $US191m. Of the two remaining, one was a deep well project in North Africa (Tunisia) costing US$24m; the other, the Itaparica Resettlement and Irrigation project in Brazil, incurred the greatest costs (US$738m).

Efficiency outcomes

Most studies report an economic rate of return (EER) – i.e. the ratio of value added by irrigation water to its costs (see Box 1 of the report) – in their analyses (however, 3 do not). EERs range from less than zero (resettlement in Brazil) to 60 (tube-wells in Bangladesh). There are similarities between canal and well projects reviewed: on average canals have EERs of about 20, but in reality this may range between 1 (Senegal) and 50 Pakistan; tube-wells have a marginally higher average EER, ranging between 2 and 60. If one compares expected to actual EER one can see that many projects under-perform – that is, 9 canals (at least those for which data were available), and 6 wells, some by very large amounts (for example, one project in Indonesia was expected generate an EER of 14, but actually only achieved 2.5 to 5; another in India was expected to produce 33, but only produced 3.

Production/yield/income/employment outcomes

Most irrigation projects report effects on production, incomes or yield (only four IBRD/World Bank-funded projects do not) but only 8 give data on all of them. 13 do not report production
estimates (mainly World Bank/IBRD-funded and IFAD-funded). Of the 14 that do, all report increases in production and all but one disaggregate by crop type, but not by income or farm size, pre-empting important distributional comparisons (i.e. effects on income and land inequality). Seventeen out of 27 report effects on yield (those that did not were mainly funded by the World Bank/IBRD and IDA). Most gave changes in yield by crop type, however 4 did not even present this and only 1 report by farm-size (Martens, 1989). Regarding effects on farm-income, 9 evaluations do not give figures at all (8 of these World Bank/IBRD-funded). The majority of the remaining 18 report rises in average income – only 6 disaggregate by farm-size, 1 by crop-type, and 2 by income group.

Although potentially a very important determinant of the impact of irrigation on poverty, only 12 of the studies present effects on employment (2 of these reports which socio-economic groups were affected). Almost all find reductions in unemployment/underemployment. Only one study presents data on wages.

EQUITY OUTCOMES

Only 13 studies explicitly refer to equity considerations. About half imply adverse distributional shifts (mainly those where participation with (poor) farmers was limited) mainly where large farmers or head-enders gained at the expense of small farmers/tail-enders. When disaggregated by irrigation type it appears that small scale irrigation on balance produces more equitable outcomes than the large-scale, indivisible projects, as one may expect. Gender impacts are only reported in 6 studies (4 of which are funded by the World Bank). Women may have gained in half of these cases. However, 15 studies present information regarding participation, i.e. on the influence of farmers in the project, the development of WUAs, power relations between e.g. head- and tail-enders. Eight of these studies report some degree of farmer participation, though in some cases landless labourers and tail-enders may be excluded.
5. Landscape-guided Climatic Inventory Using Remote-sensing Imagery. F. van der Laan. 1985 (E)*
7. Status Report on Plant Nutrition in Fertilizer Programme Countries in Asia and the Pacific Region. 1986 (E)*
9. Levels of Fertilizer Use in the Asia and Pacific Region. 1986 (E)*
11. Irrigation and Water Resources Potential for Africa. 1987 (E)
12. Effects of Agricultural Development on Vector-borne Diseases. 1987 (E)
13. Irrigated Areas in Africa. E/F. 1987 (E)
15. NGO Casebook on Small-scale Irrigation in Africa. R. Carter. 1989 (E)
16. Water, Soil and Crop Management Relating to the Use of Saline Water. 1990 (E)
18. Improved Irrigation System Performance for Sustainable Agriculture. 1991 (E)
19. Fertigation/Chemigation. 1991 (E)
20. Secondary Nutrients. 1992 (E)
21. Le travail du sol pour une agriculture durable. 1997 (F)
23. Integrated Soil Management for Sustainable Agriculture and Food Security in Southern and East Africa. 1999 (E)
24. Soil Physical Constraints to Plant Growth and Crop Production. 1999 (E)
29. Water and Agriculture in the Nile Basin. 2000 (E)
30. Guidelines for Participatory Diagnosis of Constraints and Opportunities for Soil and Plant Nutrient Management. 2000 (E)
31. Soil and nutrient management in sub-Saharan Africa in support of the soil fertility initiative. 2001 (E)
32. Small dams and weirs in earth and gabion materials. 2001 (E)
33. Guidelines for the qualitative assessment of land resources and degradation. 2001 (E)
34. Preliminary review of the impact of irrigation on poverty with special emphasis on Asia. 2003 (E)

Availability: December 2002

E - English
F - French
S - Spanish
* Out of print
Preliminary review of the impact of irrigation on poverty – with special emphasis on Asia